Screening Effect of Amino Acid on Xylitol Production By Recombinant Escherichia coli System

Authors

  • Siti Fatimah Zaharah Muhamad Fuzi Department of Technology and Natural Resources, Faculty of Applied Science and Technology, UTHM Pagoh, Pagoh Higher Education Hub, Panchor, Johor, Malaysia.
  • Farhana Adilah Zahari Department of Technology and Natural Resources, Faculty of Applied Science and Technology, UTHM Pagoh, Pagoh Higher Education Hub, Panchor, Johor, Malaysia.
  • Ong Hong Puay Department of Technology and Natural Resources, Faculty of Applied Science and Technology, UTHM Pagoh, Pagoh Higher Education Hub, Panchor, Johor, Malaysia.
  • Low Kheng Oon Malaysia Genome & Vaccine Institute, Jln Bangi, Kajang, Selangor, Malaysia.
  • Iskandar Abdullah Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.

DOI:

https://doi.org/10.11113/bioprocessing.v2n1.23

Keywords:

Amino acid, Xylitol, Escherichia coli

Abstract

Numerical studies have been conducted to sources for safer biological methods to produce xylitol. In view of these concerns and the benefits of xylitol, a fermentation process that is formulated to yield highest xylitol is both favourable and profitable. In this study, recovery of xylitol production from xylose by recombinant Escherichia coli system was conducted by modulating both carbon source and amino acid composition of the media for the relative growth delay of the strain. The key enzyme for xylitol production in this recombinant system is xylose reductase, XR which utilize NADPH to reduce D-xylose to xylitol. By adding 20 types of amino acids individually and substituting glycerol as the carbon source each time, showed an increase of xylitol to 5.24 g/L and yield biomass production to 1.536. It is hypothesize that supply of single amino acid act as a tool to enhance (NAD(P)H)/(NADP+) ratio. Reduced NAD(P)H competition from other bioprocesses help the cell replenishes the reduced cofactor pool. Xylitol has a remarkable benefits as a healthy replacement of table sugar. Therefore, the success of this study will definitely bring forward advance in the production technology and act as a reference for future research.

References

Abd Rahman, N. H., Md. Jahim, J., Abdul Munaim, M. S., A. Rahman, R., Fuzi, S. F., & Md. Illias, R. (2020). Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme and Microbial Technology, 135, 109495.

Chin, J. W., & Cirino, P. C. (2011). Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnology Progress, 27(2), 333–341.

Damião X, F., Santos B. G., Florentino, M. S. S., Sousa, C. L., Luiz, H. S. F., Joice, O. S. A. & Maria, C. M. (2018). Evaluation of the simultaneous production of xylitol and ethanol from sisal fiber. Biomolecules, 8(1): 2.

Datsenko, K. A. & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 97(12), 6640-6645.

Hedblom, M. L., & Adler, J. (1983). Chemotactic response of Escherichia coli to chemically synthesized amino acids. Journal of Bacteriology, 155(3), 1463–1466.

Khan, S., Ullah, M. W., Siddique, R., Nabi, G., Manan, S., Yousaf, M., & Hou, H. (2016). Role of recombinant DNA technology to improve life. International Journal of Genomics, 2016, 1–14

Kim, T. S., Hui, G., Li, J., Kalia, V. C., Muthusamy, K., Sohng, J. K. & Lee, J. K. (2019). Overcoming NADPH product inhibition improves D-sorbitol conversion to L-sorbose. Scientific Reports, 9(1): 815.

Ko, B. S., Kim, J. & Kim, J. H. (2006). Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Applied and Environmental Microbiology, 72(6), 4207-4213.

Mathew, A. K., Abraham, A., Mallapureddy, K. K. & Sukumaran, R. K. (2018). Chapter 9 - Lignocellulosic Biorefinery Wastes, or Resources? Waste Biorefinery Editor(s): Bhaskar, T., Pandey, A., Mohan, S. V., Lee, D. J., Khanal, S. K. (pp. 267-297). Elsevier.

Mesibov, R., & Adler, J. (1972). Chemotaxis toward amino acids in Escherichia coli. Journal of Bacteriology, 112(1), 315–326.

Murarka, A., Dharmadi, Y., Yazdani, S. S., & Gonzalez, R. (2008). Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Applied and Environmental Microbiology, 74(4), 1124–1135.

Navaneethan, Y., Effarizah, M. E. & Ismail, N. (2021). Toxins of foodborne pathogen Bacillus cereus and the regulatory factors controlling the biosynthesis of its toxins. Sains Malaysiana, 50(6), 1651-1662.

Nidetzky, B., Helmer, H., Klimacek, M., Lunzer, R.. & Mayer, G. (2003). Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chemico-biological interactions, 143, 533-542.

Pellizza, L., Smal, C., Rodrigo, G. & Arán, M. (2018). Codon usage clusters correlation: towards protein solubility prediction in heterologous expression systems in E. coli. Scientific reports, 8(1), 10618.

Rekha, K., Shailja, S., Utsang, K., Afzal, A., Ruchi, T., Kuldeep, D., Jayashankar, D., Ashok, M., Kumar, S. R. (2019). Analysis of nipah virus codon usage and adaptation to hosts. Frontiers in Microbiology, 10, 886.

Rodionova, I. A., Schuster, B. M., Guinn, K. M., Sorci, L., Scott, D. A., Li, X., Kheterpal, I., Shoen, C., Cynamon, M., Locher, C., Rubin, E. J., & Osterman, A. L. (2014). Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in Mycobacteria. mBio, 5(1).

Rosano, G. L. & Ceccarelli, E. A. (2009). Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial Cell Factories, 8(1), 41.

Rosano, G. L. & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology. 17;5:172

Traxler, M. F., Summers, S. M., Nguyen, H. T., Zacharia, V. M., Hightower, G. A., Smith, J. T. & Conway, T. (2008). The global, ppGpp‐mediated stringent response to amino acid starvation in Escherichia coli. Molecular Microbiology, 68(5), 1128-1148.

Trinh, C. T. & Srienc, F. (2009). Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Applied & Environmental Microbiology, 75(21), 6696-6705.

Varik, V., Oliveira, S. R. A., Hauryliuk, V. & Tenson, T. (2016). Composition of the outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of stringent and relaxed Escherichia coli. Scientific Reports, 6, 22308.

Xu, B. & Ma, C. (2019). Advances in the production of 1, 3-propanediol by microbial fermentation. In AIP Conference Proceedings, 2110(1), 020048. AIP Publishing.

Yuvadetkun, P. & Boonmee, M. (2016). Ethanol production capability of Candida shehatae in mixed sugars and rice straw hydrolysate. Sains Malaysiana, 45(4), 581–587

Zieliński, M., Romanik-Chruścielewska, A., Mikiewicz, D., Łukasiewicz, N., Sokołowska, I., Antosik, J. & Płucienniczak, A. (2019). Expression and purification of recombinant human insulin from E. coli 20 strain. Protein Expression and Purification, 157, 63-69.

Downloads

Published

2023-06-29

Issue

Section

Articles