A Brief Review of Immobilized Oxidoreductase Enzymes for the Removal of Endocrine-Disrupting Chemicals from Wastewater

Authors

  • Noor Hidayah Abd Rahman Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Khirthanna Murugesu Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Roshanida A. Rahman Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Zurina Mohamad Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Juhana Jaafar Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Rosli Md Illias Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Dalia Sukmawati Biology Department, Laboratory of Microbiology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
  • Mohd Syahlan Mohd Syukri Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/bioprocessing.v2n1.27

Keywords:

Endocrine Disrupting Chemicals, Oxidoreductase Enzymes, Immobilization, Wastewater

Abstract

Modern technological of human activities in industries or housing areas have created an unhealthy environment, particularly through unmanageable wastewater. For the time being, this kind of pollution is getting serious as it caused the emerging pollutant actively to spread to humans and living organisms. These non-biodegradable pollutants, to be specifically known as endocrine-disrupting chemicals (EDCs) are synthetic or natural chemicals that have high toxicity and persistency which can interfere with the endocrine system in humans and animals. The removal of EDCs has received high attraction among researchers using physical-chemical treatments, however, conventional techniques do not effectively remove EDCs from wastewater. This review aims to discuss research related to biological approaches that have been carried out to efficiently remove EDCs from wastewater using oxidoreductase enzymes, especially via an immobilization strategy. In general, free enzymes have limitations to be applied in industrial scales such as low stability and fragility, and unable to separate from the bulk solution. On the other hand, immobilized enzymes offer better operational stability and reusability in harsh environments. This review also discussed the bioremediation of EDCs using several immobilized oxidoreductase enzymes like lignin peroxidase (LiP), manganese peroxidases (MnP), horseradish peroxidases (HRP), laccases and tyrosinases. The application of immobilized enzymes and factors affecting the bioremediation using oxidoreductase enzymes were also explored to highlight their potential for the removal of EDCs from wastewater.

References

Adeel, M., Yang, Y. S., Wang, Y. Y., Song, X. M., Ahmad, M. A., & Rogers, H. J. (2018). Uptake and transformation of steroid estrogens as emerging contaminants influence plant development. Environmental Pollution. 243, 1487-1497.

Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Eduardo Sosa-Hernández, J., Barceló, D., Iqbal, H.M.N. & Parra-Saldívar, R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review. International Journal of Biological Macromolecules. 181, 683-696.

Ali, I., Asim, M., Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management. 113, 170-183.

Agrawal, K., Chaturvedi, V., & Verma, P. (2018). Fungal Laccase Discovered but yet Undiscovered. Bioresources and Bioprocessing, 5(1), 4.

Ahmad, R., & Sardar, M. (2015). Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochemistry and Analytical Biochemistry. 4, 178.

Al-Jandal, N., Saeed, T., Azad, I., Al-Subiai, S., Al-Zekri, W., Hussain, S., & Al-Hasan, E. (2018). Impact of Endocrine Disrupting Compounds in Sewage Impacted Coastal Area on Seabream. Ecotoxicology and Environmental Safety. 150, 280-288.

Alneyadi, A. H., Rauf, M. A., & Ashraf, S. S. (2018). Oxidoreductases for the Remediation of Organic Pollutants in Water - A Critical Review. Critical Reviews in Biotechnology. 38(7), 971-988.

Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera de los Santos, M., . . . Valdez-Cruz, N. A. (2019). Laccases: Structure, Function, and Potential Application in Water Bioremediation. Microbial Cell Factories. 18(1), 200.

Arslan, M. (2011). Immobilization horseradish peroxidase on amine-functionalized glycidyl methacrylate-g-poly (ethylene terephthalate) fibers for use in azo dye decolorization. Polymer Bulletin. 66, 865-879.

Asgher, M., Aslam, B., & Iqbal, H. M. N. (2013). Novel catalytic and effluent decolorization functionalities of sol-gel immobilized Pleurotus ostreatus IBL-02 manganese peroxidase produced from bio-processing of wheat straw. Chinese Journal of Catalysis. 34(9), 1756-1761.

Ashkan, Z., Hemmati, R., Homaei, A., Dinari, A., Jamlidoost, M., & Tashakor, A. (2021). Immobilization of Enzymes on Nanoinorganic Support Materials: An Update. International Journal of Biological Macromolecules. 168, 708-721.

Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., Adams, C. D., & Surampalli, R. Y. (2006). Endocrine Disrupting Compounds Removal from Wastewater, A New Challenge. Process Biochemistry. 41(3), 525-539.

Azizi, D., Arif, A., Blair, D., Dionne, J., Filion, Y., Ouarda, Y., . . . Blais, J.-F. (2022). A Comprehensive Review on Current Technologies for Removal of Endocrine Disrupting Chemicals from Wastewaters. Environmental Research. 207, 112196.

Ba, S. and Vinoth Kumar, V. (2017). Recent developments in the use of tyrosinase and laccase in environmental applications. Critical Reviews in Biotechnology. 37(7), 819-832.

Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2017). Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal of Genetic Engineering and Biotechnology. 15(1), 139-150.

Bayramoglu, G., Akbulut, A., & Yakup Arica, M. (2013). Immobilization of Tyrosinase on Modified Diatom Biosilica: Enzymatic removal of phenolic compounds from aqueous solution. Journal of Hazardous Materials. 244-245, 528-536.

Bayramoğlu, G., & Arıca, M. Y. (2008). Enzymatic Removal of Phenol and p-chlorophenol in Enzyme Reactor: Horseradish Peroxidase Immobilized on Magnetic Beads. Journal of Hazardous Materials. 156(1), 148-155.

Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Emerging Contaminants of High Concern and Their Enzyme-assisted Biodegradation – A Review. Environment International. 124, 336-353.

Bilal, M., & Asgher, M. (2015). Dye Decolorization and Detoxification Potential of Ca-alginate Beads Immobilized Manganese Peroxidase. BMC Biotechnology. 15(1), 111.

Bilal, M., Asgher, M., Iqbal, H. M. N., Hu, H., & Zhang, X. (2016b). Gelatin-Immobilized Manganese Peroxidase with Novel Catalytic Characteristics and Its Industrial Exploitation for Fruit Juice Clarification Purposes. Catalysis Letters. 146(11), 2221-2228.

Bilal, M., Iqbal, H. M. N., Hussain Shah, S. Z., Hu, H., Wang, W., & Zhang, X. (2016a). Horseradish Peroxidase-Assisted Approach to Decolorize and Detoxify Dye Pollutants in a Packed Bed Bioreactor. Journal of Environmental Management. 183, 836-842.

Bilal, M., Iqbal, M., Hu, H., & Zhang, X. (2016). Mutagenicity and Cytotoxicity Assessment of Biodegraded Textile Effluent by Ca-alginate Encapsulated Manganese Peroxidase. Biochemical Engineering Journal. 109, 153-161.

Bilal, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Agarose-chitosan Hydrogel-immobilized Horseradish Peroxidase with Sustainable Bio-catalytic and Dye Degradation Properties. International Journal of Biological Macromolecules. 124, 742-749.

Bronikowski, A., Hagedoorn, P. L., Koschorreck, K., & Urlacher, V. B. (2017). Expression of a New Laccase from Moniliophthora roreri at High Levels in Pichia pastoris and Its Potential Application in Micropollutant Degradation. AMB Express. 7(1), 73.

Cabana, H., Jones, J. P., & Agathos, S. N. (2007). Preparation and Characterization of Cross-linked Laccase Aggregates and Their Application to the Elimination of Endocrine Disrupting Chemicals. Journal of Biotechnology. 132(1), 23–31.

Catherine, H., Penninckx, M., & Frédéric, D. (2016). Product Formation from Phenolic Compounds Removal by Laccases: A review. Environmental Technology & Innovation. 5, 250-266.

Chakraborty, S., Rusli, H., Nath, A., Sikder, J., Bhattacharjee, C., Curcio, S., & Drioli, E. (2016). Immobilized Biocatalytic Process Development and Potential Application in Membrane Separation: A Review. Critical Reviews in Biotechnology. 36(1), 43-58.

Chang, Q., & Tang, H. (2014). Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2, 4-dichlorophenol. Molecules. 19(10), 15768-15782.

Chang, Y., Yang, D., Li, R., Wang, T., & Zhu, Y. (2021). Textile Dye Biodecolorization by Manganese Peroxidase: A Review. Molecules. 26(15).

Chowdhary, P., Shukla, G., Raj, G., Ferreira, L. F. R., & Bharagava, R. N. (2018). Microbial Manganese Peroxidase: A Ligninolytic Enzyme and Its Ample Opportunities in Research. SN Applied Sciences. 1(1), 45.

Crini, G., & Lichtfouse, E. (2019). Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environmental Chemistry Letters. 17(1), 145-155.

Daronch, N. A., Kelbert, M., Pereira, C. S., de Araújo, P. H. H., & de Oliveira, D. (2020). Elucidating the Choice for a Precise Matrix for Laccase Immobilization: A Review. Chemical Engineering Journal. 397, 125506.

Datta, S., Christena, L. R., & Rajaram, Y. R. (2013). Enzyme Immobilization: An Overview on Techniques and Support Materials. 3 Biotech. 3(1), 1-9.

Dehghanifard, E., Jonidi Jafari, A., Rezaei Kalantary, R., Mahvi, A. H., Faramarzi, M. A., & Esrafili, A. (2013). Biodegradation of 2, 4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iranian Journal of Environmental Health Science and Engineering. 10, 1-9.

Dinçer, A., çınar becerik, S., & Aydemir, T. (2012). Immobilization of Tyrosinase on Chitosan-clay Composite Beads. International Journal of Biological Macromolecules. 50, 815-820.

Elisashvili, V., Kachlishvili, E., Asatiani, M. D., Darlington, R., & Kucharzyk, K. H. (2017). Physiological peculiarities of lignin-modifying enzyme production by the white-rot basidiomycete Coriolopsis gallica strain BCC 142. Microorganisms. 5(4), 73.

Eriksson, K. E. L., & Bermek, H. (2009). Lignin, Lignocellulose, Ligninase. In M. Schaechter (Ed.), Encyclopedia of Microbiology (Third Edition) (pp. 373-384). Oxford: Academic Press.

Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., & Okoh, A. I. (2017). Lignin Peroxidase Functionalities and Prospective Applications. Microbiologyopen. 6(1).

Ferreira-Leitao, V. S., de Carvalho, M. E. A., & Bon, E. P. (2007). Lignin peroxidase efficiency for methylene blue decolouration: comparison to reported methods. Dyes and Pigments. 74(1), 230-236.

Galliker, P., Hommes, G., Schlosser, D., Corvini, P. F. X., & Shahgaldian, P. (2010). Laccase-modified Silica Nanoparticles Efficiently Catalyze the Transformation of Phenolic Compounds. Journal of Colloid and Interface Science. 349(1), 98–105.

Górecka, E., & Jastrzębska, M. (2011). Immobilization Techniques and Biopolymer Carriers. Biotechnology and Food Science. 75(1), 65-86.

Guo, J., Liu, X., Zhang, X., Wu, J., Chai, C., Ma, D., . . . Ge, W. (2019). Immobilized Lignin Peroxidase on Fe3O4@SiO2@polydopamine Nanoparticles for Degradation of Organic Pollutants. International Journal of Biological Macromolecules. 138, 433-440.

Hirano, T., Honda, Y., Watanabe, T., & Kuwahara, M. (2000). Degradation of Bisphenol A by the Lignin-Degrading Enzyme, Manganese Peroxidase, Produced by the White-rot Basidiomycete, Pleurotus ostreatus. Bioscience, Biotechnology, and Biochemistry. 64(9), 1958–1962.

Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme Immobilization: An Update. Journal of Chemical Biology. 6(4), 185-205.

Hu, Z., Xu, L., & Wen, X. (2013). Mesoporous Silicas Synthesis and Application for Lignin Peroxidase Immobilization by Covalent Binding Method. Journal of Environmental Sciences. 25(1), 181-187.

Ifelebuegu, A., & Ezenwa, C. (2011). Removal of Endocrine Disrupting Chemicals in Wastewater Treatment by Fenton-Like Oxidation. Water, Air, & Soil Pollution. 217, 213-220.

Ismail, N. A. H., Wee, S. Y., Haron, D. E. M., Kamarulzaman, N. H., & Aris, A. Z. (2020). Occurrence of Endocrine Disrupting Compounds in Mariculture Sediment of Pulau Kukup, Johor, Malaysia. Marine Pollution Bulletin. 150, 110735.

Ji, C., Hou, J., & Chen, V. (2016). Cross-linked Carbon Nanotubes-based Biocatalytic Membranes for Micro-pollutants Degradation: Performance, Stability, and Regeneration. Journal of Membrane Science. 520, 869-880.

Kalsoom, U., Ahsan, Z., Bhatti, H. N., Amin, F., Nadeem, R., Aftab, K., & Bilal, M. (2022). Iron Oxide Nanoparticles Immobilized Aspergillus flavus Manganese Peroxidase with Improved Biocatalytic, Kinetic, Thermodynamic, and Dye Degradation Potentialities. Process Biochemistry. 117, 117-133.

Kim, H. J., Suma, Y., Lee, S. H., Kim, J.-A., & Kim, H. S. (2012). Immobilization of Horseradish Peroxidase onto Clay Minerals Using Soil Organic Matter for Phenol Removal. Journal of Molecular Catalysis B: Enzymatic. 83, 8–15.

Kumar, A., & Chandra, R. (2020). Ligninolytic Enzymes and Its Mechanisms for Degradation of Lignocellulosic Waste in Environment. Heliyon. 6(2), e03170.

Kumar, R., Qureshi, M., Vishwakarma, D. K., Al-Ansari, N., Kuriqi, A., Elbeltagi, A., & Saraswat, A. (2022). A Review on Emerging Water Contaminants and The Application of Sustainable Removal Technologies. Case Studies in Chemical and Environmental Engineering. 6, 100219.

Kunamneni, A., Camarero, S., García-Burgos, C., Plou, F. J., Ballesteros, A., & Alcalde, M. (2008). Engineering and Applications of Fungal Laccases for Organic Synthesis. Microbial Cell Factories. 7(1), 32.

Lai, Y.-C., & Lin, S.-C. (2005). Application of Immobilized Horseradish Peroxidase for the Removal of p-chlorophenol from Aqueous Solution. Process Biochemistry. 40(3), 1167-1174.

Lassouane, F., Aït-Amar, H., Amrani, S., & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresource Technology. 271, 360-367.

Lee, C. H., Jin, E. S., Lee, J. H., & Hwang, E. T. (2020). Immobilization and Stabilization of Enzyme in Biomineralized Calcium Carbonate Microspheres. Frontiers in Bioengineering and Biotechnology. 8.

Lin, J., Liu, Y., Chen, S., Le, X., Zhou, X., Zhao, Z., Yang, J. (2016). Reversible Immobilization of Laccase onto Metal-ion-chelated Magnetic Microspheres for Bisphenol A removal. International Journal of Biological Macromolecules. 84, 189-199.

Liu, D.-M., Chen, J., & Shi, Y.-P. (2018). Advances on Methods and Easy Separated Support Materials for Enzymes Immobilization. TrAC Trends in Analytical Chemistry. 102, 332-342.

Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., . . . Xie, G. (2012). Immobilization of Laccase on Magnetic Bimodal Mesoporous Carbon and The Application in the Removal of Phenolic Compounds. Bioresource Technology. 115, 21-26.

Liu, Z.-h., Dang, Z., Yin, H., & Liu, Y. (2021). Making Waves: Improving Removal Performance of Conventional Wastewater Treatment Plants on Endocrine Disrupting Compounds (EDCs): Their Conjugates Matter. Water Research. 188, 116469.

Liu, Z.-h., Kanjo, Y., & Mizutani, S. (2009). Removal Mechanisms for Endocrine Disrupting Compounds (EDCs) in Wastewater Treatment — Physical Means, Biodegradation, and Chemical Advanced Oxidation: A Review. Science of The Total Environment. 407(2), 731-748.

Liu, J.-Z., Song, H.-Y., Weng, L.-P., & Ji, L.-N. (2002). Increased Thermostability and Phenol Removal Efficiency by Chemical Modified Horseradish Peroxidase. Journal of Molecular Catalysis B: Enzymatic. 18(4), 225–232.

Matto, M., & Husain, Q. (2009). Decolorization of Direct Dyes by Immobilized Turnip Peroxidase in Batch and Continuous Processes. Ecotoxicology and Environmental Safety. 72(3), 965–971.

Min, K., Park, G. W., Yoo, Y. J., & Lee, J.-S. (2019). A Perspective on the Biotechnological Applications of the Versatile Tyrosinase. Bioresource Technology. 289, 121730.

Mohamad, N. R., Marzuki, N. H., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnology & Biotechnological Equipment. 29(2), 205-220.

Mohamad Said, K. A., Ismail, A. F., Zulhairun, A. K., Abdullah, M. S., Usman, J., Azali, M. A., & Azali, M. A. (2021). Zinc Ferrite Migration Dependence on Magnetic Induce Membrane for Phenol Removal: Adsorption Reaction and Diffusion Study. Journal of Environmental Chemical Engineering. 9(1), 105036.

Mohamed, S. A., Darwish, A. A., & El-Shishtawy, R. M. (2013). Immobilization of Horseradish Peroxidase on Activated Wool. Process Biochemistry. 48(4), 649-655.

Monier, M., Ayad, D. M., Wei, Y., & Sarhan, A. A. (2010). Immobilization of Horseradish Peroxidase on Modified Chitosan Beads. International Journal of Biological Macromolecules. 46(3), 324–330.

Nawaz, A., Shafi, T., Khaliq, A., Mukhtar, H., & Haq, I. (2017). Tyrosinase: Sources, Structure and Applications. International Journal of Biotechnology and Bioengineering. 3, 135-141. doi:10.25141/2475-3432-2017-5.0135.

Olusola, M., Oloke, J., Boruah, H., Adetunji, C., A.K, B., & Borah, M. (2012). Extraction and Purification of Extracellular Laccase from Wild, Mutants and Hybrid Strains of Two White-Rot Fungus and Its Applications in Decolourization and Ligninolysis. Journal of Microbiology, Biotechnology and Food Sciences. 2.

Palaskar, R. S., Kate, S. A., Khandagale, M. S., Namekar, S. B., Aher, S. B., Nale, A. R., & Tandale, A. J. (2022). Screening Of Laccase Producer From Soil And Its Applications. Journal of Advanced Scientific Research. 13(01), 311-318.

Parveen, S., Asgher, M., & Bilal, M. (2021). Lignin peroxidase-based cross-linked enzyme aggregates (LiP-CLEAs) as robust biocatalytic materials for mitigation of textile dyes-contaminated aqueous solution. Environmental Technology & Innovation. 21, 101226.

Pironti, C., Ricciardi, M., Proto, A., Bianco, P. M., Montano, L., & Motta, O. (2021). Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. Water, 13(10).

Qureshi, U. A., Hameed, B. H., & Ahmed, M. J. (2020). Adsorption of Endocrine Disrupting Compounds and Other Emerging Contaminants Using Lignocellulosic Biomass-Derived Porous Carbons: A Review. Journal of Water Process Engineering. 38, 101380.

Rahmani, K., Faramarzi, M. A., Mahvi, A. H., Gholami, M., Esrafili, A., Forootanfar, H., & Farzadkia, M. (2015). Elimination and Detoxification of Sulfathiazole and Sulfamethoxazole Assisted by Laccase Immobilized on Porous Silica Beads. International Biodeterioration & Biodegradation. 97, 107-114.

Rajasulochana, P., & Preethy, V. (2016). Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water – A Comprehensive Review. Resource-Efficient Technologies. 2(4), 175-184.

Ratanapongleka, K., & Punbut, S. (2018). Removal of Acetaminophen in Water by Laccase Immobilized in Barium Alginate. Environmental Technology. 39(3), 336-345. doi:10.1080/09593330.2017.1301563.

Roy, S., Das, I., Munjal, M., Karthik, L., Kumar, G., Kumar, S., & Rao, K. V. B. (2014). Isolation and Characterization of Tyrosinase Produced by Marine Actinobacteria and Its Application in the Removal of Phenol from Aqueous Environment. Frontiers in Biology. 9(4), 306-316. doi:10.1007/s11515-014-1324-0.

Sanjay, G., & Sugunan, S. (2006). Enhanced pH and Thermal Stabilities of Invertase Immobilized on Montmorillonite K-10. Food Chemistry. 94(4), 573–579.

Sani, S., Mohd Muhid, M.N. & Hamdan, H. (2011). Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution. Journal of Sol-Gel Science and Technology. 59, 7–18.

Sarker, B., Keya, K. N., Mahir, F., Nahiun, K., Shahida, S., & Khan, R. (2021). Scientific Review Surface and Ground Water Pollution: Causes and Effects of Urbanization and Industrialization in South Asia. Scientific Review. 7, 32-41. doi:10.32861/sr.73.32.41.

Seetharam, G. B., & Saville, B. A. (2003). Degradation of Phenol Using Tyrosinase Immobilized on Siliceous Supports. Water Research. 37(2), 436-440.

Shaheen, R., Asgher, M., Hussain, F., & Bhatti, H. N. (2017). Immobilized Lignin Peroxidase from Ganoderma Lucidum IBL-05 With Improved Dye Decolorization and Cytotoxicity Reduction Properties. International Journal of Biological Macromolecules. 103, 57-64.

Shraddha, Shekher, R., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications. Enzyme Research. 2011, 217861.

Siddeeg, S. M., Tahoon, M. A., Mnif, W., & Ben Rebah, F. (2020). Iron Oxide/Chitosan Magnetic Nanocomposite Immobilized Manganese Peroxidase for Decolorization of Textile Wastewater. Processes. 8(1), 5.

Strong, P. J., & Claus, H. (2011). Laccase: A Review of Its Past and Its Future in Bioremediation. Critical Reviews in Environmental Science and Technology. 41(4), 373-434.

Spadiut, O., & Herwig, C. (2013). Production and purification of the multifunctional enzyme horseradish peroxidase. Pharmaceutical Bioprocessing. 1(3), 283.

Surana, D., Gupta, J., Sharma, S., Kumar, S., & Ghosh, P. (2022). A Review on Advances in Removal of Endocrine Disrupting Compounds from Aquatic Matrices: Future Perspectives on Utilization of Agri-Waste Based Adsorbents. Science of The Total Environment. 826, 154129.

Twala, P. P., Mitema, A., Baburam, C., & Feto, N. A. (2020). Breakthroughs in the Discovery and Use of Different Peroxidase Isoforms of Microbial Origin. AIMS Microbiology. 6(3), 330-349.

Valero, E., González-Sánchez, M., & Pérez-Prior, M. (2014). Removal of Organic Pollutants from Industrial Wastewater by Treatment with Oxidoreductase Enzymes. In (pp. 317-339).

Vineh, M. B., Saboury, A. A., Poostchi, A. A., Rashidi, A. M., & Parivar, K. (2018). Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. International Journal of Biological Macromolecules. 106, 1314-1322.

Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal Laccases and Their Applications in Bioremediation. Enzyme Research. 2014, 163242. doi:10.1155/2014/163242.

Wee, S. Y., & Aris, A. Z. (2017). Endocrine Disrupting Compounds in Drinking Water Supply System and Human Health Risk Implication. Environment International. 106, 207-233.

Wee, S. Y., & Aris, A. Z. (2019). Occurrence and Public-Perceived Risk of Endocrine Disrupting Compounds in Drinking Water. npj Clean Water, 2(1), 4.

Wu, Q., Xu, Z., Duan, Y., Zhu, Y., Ou, M. et al. (2017) Immobilization of tyrosinase on polyacrylonitrile beads: biodegradation of phenol from aqueous solution and the relevant cytotoxicity assessment. RSC Advances. 7, 28114–281123.

Wu, E., Li, Y., Huang, Q., Yang, Z., Wei, A., & Hu, Q. (2019). Laccase Immobilization on Amino-Functionalized Magnetic Metal Organic Framework for Phenolic Compound Removal. Chemosphere. 233.

Xu, D.-Y., & Yang, Z. (2013). Cross-linked Tyrosinase Aggregates for Elimination of Phenolic Compounds From Wastewater. Chemosphere. 92(4), 391-398.

Zainith, S., Chowdhary, P., Mani, S., & Mishra, S. (2020). 9 - Microbial Ligninolytic Enzymes and Their Role in Bioremediation. In P. Chowdhary, A. Raj, D. Verma, & Y. Akhter (Eds.), Microorganisms for Sustainable Environment and Health (pp. 179-203): Elsevier.

Zdarta, J., Antecka, K., Frankowski, R., Zgoła-Grześkowiak, A., Ehrlich, H., & Jesionowski, T. (2018). The Effect of Operational Parameters on the Biodegradation of Bisphenols by Trametes Versicolor Laccase Immobilized on Hippospongia Communis Spongin Scaffolds. Science of The Total Environment. 615, 784-795.

Zdarta, J., Jankowska, K., Bachosz, K., Degórska, O., Kaźmierczak, K., Nguyen, L. N., . . . Jesionowski, T. (2021). Enhanced Wastewater Treatment by Immobilized Enzymes. Current Pollution Reports. 7(2), 167-179.

Zhang, S., Lin, F., Yuan, Q., Liu, J., Li, Y., & Liang, H. (2020). Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. Journal of Environmental Sciences. 88, 103-111.

Zhou, W., Zhang, W., & Cai, Y. (2021). Laccase Immobilization for Water Purification: A Comprehensive Review. Chemical Engineering Journal. 403, 126272.

Zucca, P., & Sanjust, E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules. 19(9), 14139-14194.

Downloads

Published

2023-06-29

Issue

Section

Articles