Facile Synthesis of Antimicrobial Aloe Vera for Cosmetic Application

Authors

  • Nur Izyan Wan Azelee Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia. Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
  • Nuraishah Mohd Sahal Selvaraja Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
  • Zehra Edis Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates. Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; s.bloukh@ajman.ac.ae (S.H.B.); h.abusara@ajman.ac.ae (H.A.S.).

DOI:

https://doi.org/10.11113/bioprocessing.v1n1.15

Keywords:

Aloe Vera,, antimicrobial properties, active ingredients, inhibition zone

Abstract

People have always been interested in cosmetic products especially when it uses only natural substances that could act as antibacterial resistance such as Aloe Vera (AV) gel that could be easily extracted from aloe vera leaves. Although pure AV gel alone provides many cosmetic applications and benefits including anti-inflammatory effect, the efficiency for antimicrobial purposes of the pure AV gel is less compared to AV gel with an addition of bioactive substances. Normally, the ingredients made for cosmetic applications consist of non-organics or chemicals that could harm the human’s skin barrier. Thus, this study aims to analyse the antimicrobial properties of local AV and to optimize the antimicrobial properties of AV for the production of antimicrobial AV for cosmetic application. The AV leaves was harvested from a residential area in Skudai, Johor Bahru, Malaysia. Then, the antimicrobial properties of AV were analysed by characterization of AV complex using a Scanning UV-Vis Spectrophotometry followed by the culturing with microbial strains of Staphylococcus Aureus and Escherichia Coli used against AV mixture. AV was mixed with active ingredients such as Polyvinylpyrrolidone (PVP), Iodine (I2) and Sodium Iodide (NaI). The determination of antimicrobial properties was done by using two approaches of disc diffusion and zone inhibition. An image of chromatogram for pure AV, AV-PVP-I2, AV-PVP-NaI and AV-PVP-I2-NaI mixture after characterization and the diameter of zone inhibition were measured. The biggest inhibition zone can be seen for AV-PVP-I2 samples at a concentration of 50 ug/mL that tested against Staphylococcus Aureus gives a diameter of 21 mm. The smallest inhibition zone can be seen for AV-PVP-I2-NaI samples at a concentration of 25 ug/mL that tested against Escherichia Coli gives a diameter of 5.6 mm. The future prospect of antimicrobial AV research will widen the use of AV, improving the extraction method of AV and enhancing environment safety for product applications.

References

Añibarro-Ortega, M., Pinela, J., Ćirić, A., Lopes, E., Molina, A. K., Calhelha, R. C., ... & Barros, L. 2021. Extraction of aloesin from Aloe vera rind using alternative green solvents: Process optimization and biological activity assessment. Biology. 10(10): 951.

Bashir, A., Saeed, B., Mujahid, T. Y., & Jehan, N. 2011. Comparative study of antimicrobial activities of Aloe vera extracts and antibiotics against isolates from skin infections. African Journal of Biotechnology, 10(19): 3835–3840. https://doi.org/10.4314/ajb.v10i19.

Behboodi-Sadabad, F., Zhang, H., Trouillet, V., Welle, A., Plumeré, N., Levkin, P.A. 2017. UV-Triggered Polymerization, Deposition, and Patterning of Plant Phenolic Compounds. Advanced Functional Materials. 27: 1700127.

Choi, S. M., Roh, T. H., Lim, D. S., Kacew, S., Kim, H. S., & Lee, B. M. 2018. Risk assessment of benzalkonium chloride in cosmetic products. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 21(1): 8–23. https://doi.org/10.1080/10937404.2017.1408552

Danish, P., Ali, Q., Hafeez, M. M., & Malik, A. 2020. Antifungal and antibacterial activity of aloe vera plant extract. Biological and Clinical Sciences Research Journal. (1): e004-e004.

Durga, A., & Mary, R. R. 2012. Analysis of Phytochemical Constituents And Antimicrobial Activities of Wedelia Chinensis Against Pathogens. International Journal of Scientific Research. 3(8): 484–486. https://doi.org/10.15373/22778179/august2014/156.

Edis, Z., & Bloukh, S. H. 2020. Facile synthesis of antimicrobial aloe vera-"smart" triiodide-PVP biomaterials. Biomimetics. 5(3): 1–30. https://doi.org/10.3390/BIOMIMETICS5030045.

Ericsson, B. H., Tunevall, G., & Wickman, K. 1960. The paper disc method for determination of bacterial sensitivity to antibiotics: Relationship between the diameter of the zone of inhibition and the minimum inhibitory concentration. Scandinavian Journal of Clinical and Laboratory Investigation. 12(4): 414-422.

Froldi, G.; Baronchelli, F.; Marin, E. 2019. Grison, M. Antiglycation Activity and HT-29 Cellular Uptake of Aloe-Emodin, Aloin, and Aloe arborescens Leaf Extracts. Molecules. 24: 2128.

Haj Bloukh, S.; Edis, Z.; Ibrahim, M.R.; Abu Sara, H. 2020. “Smart” antimicrobial nanocomplexes with potential to decrease surgical site infections (SSI). Pharmaceutics. 12: 361.

Id, Z. B., Boucherit, K., Rodrigues, E., & Ferreira, I. C. F. R. 2020. Cosmetics Preservation : A Review on Present Strategies. 1–41. https://doi.org/10.3390/molecules23071571.

Javed, S., & Atta-Ur, R. 2014. Aloe vera gel in food, health products, and cosmetics industry. In Studies in Natural Products Chemistry (1st ed., Vol. 41). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63294-4.00009-7.

Jothi, D. 2009. Experimental study on antimicrobial activity of cotton fabric treated with aloe gel extract from Aloe vera plant for controlling the Staphylococcus aureus (bacterium). African Journal of Microbiology Research, 3(5): 228-232.

Kuntic, V., Pejic, N., Mi´ci´c, S. 2012. Direct Spectrophotometric Determination of Hesperidin in Pharmaceutical Preparations. Acta Chimica Slovenica. 59: 436–441.

Liu,W., Cai, A., Carley, R., Rocchio, R., Petrovas, Z.M., Chartier, C.A., Meng, X., Su, J., Cho, B.P., Dain, J.A., et al. 2018. Bioactive anthraquinones found in plant foods interact with human serum albumin and inhibit the formation of advanced glycation endproducts. Journal of Food Bioactives. 4: 130–138.

Logaranjan, K., Raiza, A.J., Gopinath, S.C., Chen, Y., Pandian, K. 2016. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity. Nanoscale Research Letters. 11: 520.

Makarova, O., Johnston, P., Walther, B., Rolff, J., & Roesler, U. 2017. Complete genome sequence of the disinfectant susceptibility testing reference strain Staphylococcus aureus subsp. aureus ATCC 6538. Genome Announcements, 5(19): e00293-17.

Nejatzadeh-Barandozi, F. 2013. Antibacterial activities and antioxidant capacity of Aloe vera. Organic and Medicinal Chemistry Letters, 3(1): 5. https://doi.org/10.1186/2191-2858-3-5.

Olaleye, M. T., & Bello-Michael, C. O. 2005. Comparative antimicrobial activities of Aloe vera gel and leaf. African Journal of Biotechnology, 4(12).

Rastilantie, M.-, Christaki, E. V, & Florou-Paneri, P. C. 2010. Www.World-Food. Agriculture & Environment, 8(2): 245–249. http://en.wikipedia.org/wiki/Aloe-Vera.

Rocha, F. S., Gomes, A. J., Lunardi, C. N., Kaliaguine, S., & Patience, G. S. 2018. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy—UV‐Vis. The Canadian Journal of Chemical Engineering, 96(12): 2512-2517.

Rohde, M. (2019). The Gram-positive bacterial cell wall. Microbiology Spectrum, 7(3), 7-3. Sharpe, M. R. 1984. Stray light in UV-VIS

spectrophotometers. Analytical Chemistry, 56(2): 339A-356A.

Sreekanth, K., Siddaiah, T., Gopal, N. O., Kumar, Y. M., & Ramu, C. 2019. Optical and electrical conductivity studies of VO2+ doped polyvinyl pyrrolidone (PVP) polymer electrolytes. Journal of Science: Advanced Materials and Devices. 4(2), 230-236.

Stanley, M. C., Ifeanyi, O. E., & Eziokwu, O. G. 2014. Antimicrobial effects of Aloe vera on some human pathogens. International Journal of Current Microbiology and Applied Sciences. 3(3): 1022-1028.

Wei, Y. J., Liu, C. G., & Mo, L. P. 2005. Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion. Guang pu xue yu guang pu fen xi= Guang pu. 25(1): 86-88.

Wimmerstedt, A., & Kahlmeter, G. 2008. Associated antimicrobial resistance in Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes. Clinical Microbiology and Infection. 14(4): 315-321.

Zhao, Y.; Sun, Y.N.; Lee, M.J.; Kim, Y.H.; Lee, W.; Kim, K.H.; Kim, K.T.; Kang, J.S. 2016. Identification and discrimination of three common Aloe species by high performance liquid chromatography-tandem mass spectrometry coupled with multivariate analysis. Journal of Chromatography B. 1031: 163–171.

Downloads

Published

2022-12-22