Evaluation on the Large Scale Glycerol Production from Used Cooking Oil using SuperPro Designer Simulator

Authors

  • Muhd Nazrul Hisham Zainal Alam Universiti Teknologi Malaysia
  • Bubpha Pean Biocon Sdn Bhd, 79200, Iskandar Puteri Johor
  • Zainul Akmar Zakaria Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/bioprocessing.v3n2.54

Keywords:

SuperPro, Bioprocessing, Used Cooking Oil, Glycerol

Abstract

Glycerol constitutes a pivotal component within various industries, with a projected value of USD 12 billion by 2030. In response to the global paradigm shift towards zero-waste manufacturing, waste cooking oil has emerged as a sustainable and environmentally friendly feedstock for production of glycerol via enzymatic hydrolysis, offering environmental benefits compared to acid and alkali hydrolysis method, characterized by lower energy intensity, no organic solvent, and higher product qualities. Despite the current research limitations at the laboratory scale, hindered by scarce data for manufacturing processes, computational modeling and simulation stands as an invaluable tool, providing accurate predictive insights without incurring additional costs. This study employed SuperPro® Designer software package to assess glycerol production from enzyme hydrolysis using palm oil waste cooking oil (PWCO) and sunflower waste cooking oil (SWCO). The objectives are to identify suitable unit operations for both pre-treatment and downstream processing stages, in achieving 99.5% glycerol purity and to evaluate technoeconomic feasibility of producing 30 MT/year of glycerol. Simulation outcomes indicated that plate and frame filter press represents the optimal pre-treatment while combination of centrifugal extractor and distillation offers the most efficient downstream processing approaches, retaining high yield with minimized process costs. Notably, the technoeconomic viability of glycerol production from PWCO surpasses that of SWCO, attributed to lower capital cost and operating cost, higher return of investment (34.45%) and shorter payback period (2.90 years). In conclusion, the application of SuperPro software successfully quantifies the potential of waste cooking oil hydrolysis as a viable method for glycerol production.

References

Adeyi, O., Oke, E. K., Adeyi, A. J., Okolo, B. I., Abdurahman, N. H., Otolorin, J. A., Aremu, O. S., & Qwebani-Ogunleye, T. (2022). Microencapsulated anthocyanins powder production from Hibiscus sabdariffa L. calyx: Process synthesis and economic analysis. Results in Engineering, 13, 100371. https://doi.org/10.1016/j.rineng.2022.100371

Attarbachi, T., Kingsley, M. D., & Spallina, V. (2023). New trends on crude glycerol purification: A review. Fuel, 340, 127485. https://doi.org/10.1016/j.fuel.2023.127485

Awogbemi, O., Onuh, E. I., & Inambao, F. L. (2019). Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low-Carbon Technologies, 14(3), 417–425. https://doi.org/10.1093/ijlct/ctz038

Baena, A., Orjuela, A., Rakshit, S. K., & Clark, J. H. (2022). Enzymatic hydrolysis of waste fats, oils and greases (FOGs): Status, prospective, and process intensification alternatives. Chemical Engineering and Processing - Process Intensification, 175, 108930. https://doi.org/10.1016/j.cep.2022.108930

Bharathiraja, B., Jayamuthunagai, J., Sreejith, R., Iyyappan, J., & Praveenkumar, R. (2022). Techno Economic Analysis of Malic Acid Production Using Crude Glycerol derived from Waste Cooking Oil. Bioresource Technology, 351. 126956.

Chilakamarry, C. R., Sakinah, A. M. M., Zularisam, A. W., & Pandey, A. (2021). Glycerol waste to value added products and its potential applications. Systems Microbiology and Biomanufacturing, 1(4), 378–396. https://doi.org/10.1007/s43393-021-00036-w

Contreras Andrade, I., Parra Santiago, J., Ricardo Sodré, J., Sebastian Pathiyamattom, J., & Guerrero-Fajardo, C. A. (2014). Transesterification Reaction of Waste Cooking Oil and Chicken Fat by Homogeneous Catalysis. 化学与化工:英文版, 8(7), 736–743. http://www.cqvip.com/QK/89596X/201407/662743745.htm

Costa, M. J., Silva, M. R., Ferreira, E. E., Carvalho, A. K. F., Basso, R. C., Pereira, E. B., de Castro, H. F., Mendes, A. A., & Hirata, D. B. (2020). Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock. Chemical Engineering and Processing - Process Intensification, 157, 108131. https://doi.org/10.1016/j.cep.2020.108131

Decarpigny, C., Aljawish, A., His, C., Fertin, B., Bigan, M., Dhulster, P., Millares, M., & Froidevaux, R. (2022). Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol. Energies, 15(9), 3381. https://doi.org/10.3390/en15093381

Ferreira, M. P., De Oliveira, G. F., Basso, R. C., Mendes, A. A., & Hirata, D. B. (2019). Optimization of free fatty acid production by enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum candidum. Bioprocess and Biosystems Engineering, 42(10), 1647–1659. https://doi.org/10.1007/s00449-019-02161-2

Foo, T. M., Kim, T. P., Ng, S. C., Khan, F. S., Moazzam, M. S., Ling, M. C., & Yeo, W. S. (2022). A new conceptual process design and economic analysis of a fatty acids and glycerine production plant using palm oil. Chemical Papers. https://doi.org/10.1007/s11696-022-02102-6

Future, M. R. (2022, September 14). Glycerin Market Size Worth USD 12 Billion by 2030 at 15% CAGR - Report by Market Research Future (MRFR). GlobeNewswire News Room. https://www.globenewswire.com/en/news release/2022/09/14/2515834/0/en/Glycerin-Market-Size-Worth-USD-12-Billion-by-2030-at-15-CAGR-Report-by-Market-Research-Future-MRFR.html

Gomez, A. M., Cruz, M. D., Tobon, A. C., Velazquez, J. L. G., Salcedo, J. G. G., & Salinas, R. M. (2014). Physical Modeling and Mathematical Simulation of Fluid Flow inside an Oil/water Separator Tank and it Effect on Flow Accelerated Corrosion. International Journal of Electrochemical Science, 9: 4793-4804.

Hasan, N. H., Yie, T. W., & Zain, N. R. M. (2017). Enzymatic Hydrolysis of Waste Cooking Palm Oil by PVA–Alginate–Sulfate Immobilized Lipase. In Sustainable Water Treatment Innovative Technologies. https://doi.org/10.1201/9781315116792-1

Istyami, A. N., Soerawidjaja, T. H., & Prakoso, T. (2018). Mass Balance and Thermodynamics Study of Thermal Triglyceride Hydrolysis. MATEC Web of Conferences, 156: 05013.

Jariah, N. U., Hassan, M. A., Taufiq-Yap, Y. H., & Roslan, A. M. (2021). Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review. Processes, 9(7), 1198. https://doi.org/10.3390/pr9071198

Khodadadi, M. R., Malpartida, I., Tsang, C. W., Lin, C. S. K., & Len, C. (2020). Recent advances on the catalytic conversion of waste cooking oil. Molecular Catalysis, 494, 111128. https://doi.org/10.1016/j.mcat.2020.111128

Li, Z., Yan, J., Sun, J., Xu, P., Ma, C., & Gao, C. (2018). Production of Value-Added Chemicals from Glycerol Using in vitro Enzymatic Cascades. Communication Chemistry, 1:71, DOI: 10.1038/s42004-018-0070-7

Loizides, M., Loizidou, X., Orthodoxou, D., & Petsa, D. (2019). Circular Bioeconomy in Action: Collection and Recycling of Domestic Used Cooking Oil through a Social, Reverse Logistics System. Recycling, 4(2), 16. https://doi.org/10.3390/recycling4020016

Lok, X., Chan, Y. J., & Foo, D. C. Y. (2020). Simulation and Optimisation of Full-Scale Palm Oil Mill Effluent (POME) Treatment Plant with Biogas Production. Journal of Water Process Engineering, 28: 101558.

Maegala, N. M., Anupriya, S., Hazwan, A. H., Suhaila, Y. N., Hasdianty, A. (2020). Conversion of Waste Cooking Oil to Glycerol by Halal Microbial Lipase. IOP Conference Series: Earth and Environmental Science, 505: 012056.

Manfaati, R., Rojab, M. N., Manurung, P. C., & Keryanti. (2023). Hydrolysis of Waste Cooking Oil Using Rizopus oryzae to Produce Free Fatty Acids. Fluida, 16(1), 30-35.

Melcher, F., Vogelgsang, F., Haack, M., Masri, M., Ringel., M., Roth, A., Garbe, D., & Brück, T. (2023). Lipase-mediated plant oil hydrolysis—Toward a quantitative glycerol recovery for the synthesis of pure allyl alcohol and acrylonitrile. European Journal of Lipase Science and Technology. DOI: 10.1002/ejlt.202200196.

Mino, Y., Sakai, S., & Matsuyama, H. (2018). Simulations of Particulate Flow Passing Through Membrane Pore Under Dead-end and Constant-pressure Filtration Condition. Chemical Engineering Science, 190: 68-76.

Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181

Monika, Banga, S., Pathak, V. V. (2023). Biodiesel Production from Waste Cooking Oil: A comprehensive Review on the Application of Heterogenus Catalysts. Energy Nexus, 10: 100209

Nitbani, F. O., Tjitda, P.J. P., Nurohmah, B. A., & Wogo, H. E. (2020). Preparation of Fatty Acid and Monoglyceride from Vegetable Oil. Journal of Oleo Science, 69(4): 277-295.

Peters, M. N., Alves, C. T., Wang, J., & Onwudili, J. A. (2022). Subcritical Water Hydrolysis of Fresh and Waste Cooking Oils to Fatty Acids Followed by Esterification to Fatty Acid Methyl Esters: Detailed Characterization of Feedstocks and Products. ACS Omega, 7: 46870-46883.

Pustulka, M. R., Mironczuk, A. M., Celinska, E., Bialas, W., & Rymowicz, W. (2020). Scale-up of the Erythritol Production Technology – Process Simulation and Techno-Economic Analysis. Journal of Cleaner Production, 257: 120533.

Ramani, K., Saranya, P., Jain, S. C., & Sekaran, G. (2012). Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies. Bioprocess and Biosystems Engineering, 36(3), 301–315. https://doi.org/10.1007/s00449-012-0785-2

Shi, C., Chen, X. J., Jioa, B., Liu, P., Jing, S. Y., Zhong, X. Z., Chen, R., Hong, W., Lin, D. Q. (2022). Model-assisted Process Design for better Evaluation and Scaling Up of Continuous Downstream Bioprocessing. Journal of Chromatography A, 1683: 463532.

Singh, V., & Rosentrater, K. A. (2019). Techno-Economic Analysis of Extruding-Expelling of Soybeans to Produce Oil and Meal. Agriculture, 9(5), 87. https://doi.org/10.3390/agriculture9050087

Souza, G. P., Correia, T. B., Reis, W. S., Bredda, E. H., Da Rós, P. C., & Pereira, E. B. (2023). Enzymatic hydrolysis of waste cooking oil by lipase catalysis: Simplex mixture design optimization. Catalysis Letters, 153(3), 689-697.

Vacharakis, Ν., Louizaki, Α., Charalambous, C., Rafaelides S., Koulouris, A. (2018). Techno-Economic Evaluation of β-Cyclodextrin Production from Cassava Tubers. Proceedings of FOODSIM’2018, Ghent, Belgium.

Valente, O. S., Pasa, V. M. D., Belchior, C. R. P., & Sodre, J. R. (2011). Physical-chemical Properties of Waste Cooking Oil Biodiesel and Castor Oil Biodiesel Blends. Fuel, 90: 1700-1702.

Zaharudin, N. A., Rashid, R., Azman, L., Esivan, S. M. M., Idris, A., & Othman, N. (2017). Enzymatic Hydrolysis of Used Cooking Oil Using Immobilized Lipase. Sustainable Technologies for the Management of Agricultural Wastes, 119–130. https://doi.org/10.1007/978-981-10-5062-6_9

Zenevicz, M. C. P., Jacques, A., Furigo, A. F., Oliveira, J. V., & de Oliveira, D. (2016). Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system. Industrial Crops and Products, 80, 235–241. https://doi.org/10.1016/j.indcrop.2015.11.031

Downloads

Published

2024-12-30

Issue

Section

Articles