Harnessing the Potentialities of Probiotics, Prebiotics and Synbiotics Application for Agriculture Industry: A Mini Review
DOI:
https://doi.org/10.11113/bioprocessing.v3n2.60Keywords:
Probiotic, Prebiotic, SynbioticAbstract
The agricultural industry significantly drives global economic growth. However, the undeniable impacts of intensive use of chemical fertilizers, pesticides, and intensified farming practices contribute to soil erosion. Synbiotics, a combination of prebiotic and probiotic offer an alternative approach to preserve and improve the quality of soil. The main objective of this review is to provide comprehensive overview of the application of the synbiotic approach to the productivity of the agriculture. The review covers soil fertility factors, as well as the roles of synbiotic, prebiotic and probiotic in enhancing the growth of plant in agriculture. Biofertilizers, consisting of organic matter and beneficial microbes, establish a symbiotic relationship with plants, enhancing both soil health and plant growth. The combination of probiotic and prebiotic can generate high production of agriculture yield.
References
Adam, E., Groenenboom, A. E., Kurm, V., Rajewska, M., Schmidt, R., Tyc, O., Weidner, S., Berg, G., De Boer, W., & Salles, J. F. (2016). Controlling the Microbiome: Microhabitat Adjustments for Successful Biocontrol Strategies in Soil and Human Gut. Frontiers in Microbiology, 7(JUL), 1–6. https://doi.org/10.3389/fmicb.2016.01079
Adedire, O. M., Pitan, A., Farinu, A. O., & Ogundipe, W. F. (2019). The Biocontrol of Soil Transmitted Cercospora capsici with Lactobacillus plantarum. Journal of Advances in Microbiology, 18(3), 1–8. https://doi.org/10.9734/jamb/2019/v18i330173
Adewole, M. B., & Ilesanmi, A. O. (2011). Effects of soil amendments on the nutritional quality of okra (Abelmoschus esculentus [L.] Moench). Journal of Soil Science and Plant Nutrition, 11(3), 45–55. https://doi.org/10.4067/S0718-95162011000300004
Adhikary, R. (2020). Causes and Effect of Soil Erosion and its Preventive Measures. Advanced Agriculture, August. https://doi.org/10.30954/ndp-advagr.2020.19
Ajeng, A. A., Abdullah, R., Malek, M. A., Chew, K. W., Ho, Y. C., Ling, T. C., Lau, B. F., & Show, P. L. (2020). The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis Guineensis) under Greenhouse Conditions. Processes, 8(12), 1–16. https://doi.org/10.3390/pr8121681
Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W. (2018). Soil Bulk Density Estimation Methods: A Review. Pedosphere, 28(4), 581–596. https://doi.org/10.1016/s1002-0160(18)60034-7
Allouzi, M. M. A., Allouzi, S. M. A., Keng, Z. X., Supramaniam, C. V., Singh, A., & Chong, S. (2022). Liquid Biofertilizers as a Sustainable Solution for Agriculture. Heliyon, 8(12), e12609. https://doi.org/10.1016/j.heliyon.2022.e12609
Araújo, F. F., Henning, A. A., & Hungria, M. (2005). Phytohormones and Antibiotics Produced by Bacillus subtilis and Their Effects on Seed Pathogenic Fungi and on Soybean Root Development. World Journal of Microbiology and Biotechnology, 21(8–9), 1639–1645. https://doi.org/10.1007/s11274-005-3621-x
Arif, Y., Sami, F., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salicylic Acid in Relation to Other Phytohormones in Plant: A Study Towards Physiology and Signal Transduction under Challenging Environment. Environmental and Experimental Botany, 175(November 2019), 104040. https://doi.org/10.1016/j.envexpbot.2020.104040
Ashwini, A., Ramya, H. N., Ramkumar, C., Reddy, K. R., Kulkarni, R. V., Abinaya, V., ... & Raghu, A. V. (2019). Reactive mechanism and the applications of bioactive prebiotics for human health. Journal of microbiological methods, 159, 128-137.
Atieno, M., Herrmann, L., Nguyen, H. T., Phan, T., Nguyen, N. K., Srean, P., Than, M. M., Zhiyong, R., Tittabutr, P., Shutsrirung, A., Bräu, L., & Lesueur, D. (2020). Assessment of Biofertilizer Use for Sustainable Agriculture in the Great Mekong Region. Journal of Environmental Management, 275, 111300. https://doi.org/10.1016/j.jenvman.2020.111300
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & Enshasy, H. El. (2021). Plant growth promoting rhizobacteria (Pgpr) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability (Switzerland), 13(3), 1–20. https://doi.org/10.3390/su13031140
Behrendt, U., Augustin, J., Spröer, C., Gelbrecht, J., Schumann, P., & Ulrich, A. (2015). Taxonomic characterisation of Proteus terrae sp. nov., a N 2 O-producing, nitrate-ammonifying soil bacterium. Antonie Van Leeuwenhoek, 108, 1457-1468.
Bent, E., Tuzun, S., Chanway, C. P., & Enebak, S. (2001). Alterations in Plant Growth and in Root Hormone Levels of Lodgepole Pines Inoculated with Rhizobacteria. Canadian Journal of Microbiology, 47(9), 793–800. https://doi.org/10.1139/cjm-47-9-793
Bhatt, M. K., Labanya, R., & Joshi, H. C. (2019). Influence of Long-term Chemical fertilizers and Organic Manures on Soil Fertility - A Review. Universal Journal of Agricultural Research, 7(5), 177–188. https://doi.org/10.13189/ujar.2019.070502
Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., & Ballabio, C. (2020). Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015-2070). Proceedings of the National Academy of Sciences of the United States of America, 117(36), 21994–22001. https://doi.org/10.1073/pnas.2001403117
Botvynko, A., Bednářová, A., Henke, S., Shakhno, N., & Čurda, L. (2019). Production of Galactooligosaccharides using Various Combinations of the Commercial Β-Galactosidases. Biochemical and Biophysical Research Communications, 517(4), 762–766. https://doi.org/10.1016/j.bbrc.2019.08.001
Brígido, C., Glick, B. R., & Oliveira, S. (2017). Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates. Microbial Ecology, 73(4), 900–915. https://doi.org/10.1007/s00248-016-0891-9
Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., & Zoppini, A. (2013). Soil Enzymes in a Changing Environment: Current Knowledge and Future Directions. Soil Biology and Biochemistry, 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009
Cáceres, R., Malińska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, 119-137.
Chandran, H., Meena, M., & Swapnil, P. (2021). Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. Sustainability (Switzerland), 13(19), 1–30. https://doi.org/10.3390/su131910986
Chatterjee, E., & GA Manuel, S. (2016). Effect of Fruit Pectin on Growth of Lactic Acid Bacteria. Journal of Probiotics & Health, 04(02). https://doi.org/10.4172/2329-8901.1000147
Chen, M., Chen, Y., Dong, S., Lan, S., Zhou, H., Tan, Z., & Li, X. (2018). Mixed nitrifying bacteria culture under different temperature dropping strategies: Nitrification performance, activity, and community. Chemosphere, 195, 800-809.
Chojnacka, K., Moustakas, K., & Witek-Krowiak, A. (2020). Bio-based Fertilizers: A Practical Approach Towards Circular Economy. In Bioresource Technology (Vol. 295). https://doi.org/10.1016/j.biortech.2019.122223
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8(3), 1–27. https://doi.org/10.3390/foods8030092
de Albuquerque, T. M. R., Borges, C. W. P., Cavalcanti, M. T., Lima, M. dos S., Magnani, M., & de Souza, E. L. (2020). Potential Prebiotic Properties of Flours from Different Varieties of Sweet Potato (Ipomoea batatas L.) Roots Cultivated in Northeastern Brazil. Food Bioscience, 36(March), 100614. https://doi.org/10.1016/j.fbio.2020.100614
De Notaris, C., Olesen, J. E., Sørensen, P., & Rasmussen, J. (2020). Input and Mineralization of Carbon and Nitrogen in Soil from Legume-Based Cover Crops. Nutrient Cycling in Agroecosystems, 116(1), 1–18. https://doi.org/10.1007/s10705-019-10026-z
Delang, C. O. (2018). The Consequences of Soil Degradation in China: A Review. GeoScape, 12(2), 92–103. https://doi.org/10.2478/geosc-2018-0010
DeMartino, P., & Cockburn, D. W. (2020). Resistant Starch: Impact on the Gut Microbiome and Health. Current Opinion in Biotechnology, 61, 66–71. https://doi.org/10.1016/j.copbio.2019.10.008
Devi, V., & Sumathy, V. J. H. (2017). Production of Biofertilizer from Fruit Waste. European Journal of Pharmaceutical and Medical Research, 4(9), 436-443.
Dominchin, M. F., Verdenelli, R. A., Berger, M. G., Aoki, A., & Meriles, J. M. (2021). Impact of N-fertilization and Peanut Shell Biochar on Soil Microbial Community Structure and Enzyme Activities in a Typic Haplustoll under Different Management Practices. European Journal of Soil Biology, 104(July 2020). https://doi.org/10.1016/j.ejsobi.2021.103298
Dou, Y., Yu, X., Luo, Y., Chen, B., Ma, D., & Zhu, J. (2022). Effect of Fructooligosaccharides Supplementation on the Gut Microbiota in Human: A Systematic Review and Meta-Analysis. Nutrients, 14(16). https://doi.org/10.3390/nu14163298
Du, J. X., Li, Y., Ur-Rehman, S., Mukhtar, I., Yin, Z., Dong, H., Wang, H., Zhang, X., Gao, Z., Zhao, X., Xin, X., & Ding, X. (2021). Synergistically promoting plant health by harnessing synthetic microbial communities and prebiotics. IScience, 24(8), 102918. https://doi.org/10.1016/j.isci.2021.102918
El-Kholy, W. M., Aamer, R. A., & Ali, A. N. A. (2020). Utilization of Inulin Extracted from Chicory (Cichorium Intybus L.) Roots to Improve the Properties of Low-Fat Synbiotic Yoghurt. Annals of Agricultural Sciences, 65(1), 59–67. https://doi.org/10.1016/j.aoas.2020.02.002
Eubeler, J. P., Bernhard, M., & Knepper, T. P. (2010). Environmental Biodegradation of Synthetic Polymers II. Biodegradation of Different Polymer Groups. TrAC - Trends in Analytical Chemistry, 29(1), 84–100. https://doi.org/10.1016/j.trac.2009.09.005
Ferreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of the Total Environment, 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106
Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic Effect of Commercial Saccharides on Probiotic Bacteria Isolated from Commercial Products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318
Foti, P., Ballistreri, G., Timpanaro, N., Rapisarda, P., & Romeo, F. V. (2022). Prebiotic Effects of Citrus Pectic Oligosaccharides. Natural Product Research, 36(12), 3173–3176. https://doi.org/10.1080/14786419.2021.1948845
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
Guo, K., Yang, J., Yu, N., Luo, L., & Wang, E. (2023). Biological Nitrogen Fixation in Cereal Crops: Progress, Strategies, and Perspectives. Plant Communications, 4(2), 100499. https://doi.org/10.1016/j.xplc.2022.100499
Gyawali, B., Ramakrishna, K., & Dhamoon, A. S. (2019). Sepsis: The Evolution in Definition, Pathophysiology, and Management. SAGE Open Medicine, 7. https://doi.org/10.1177/2050312119835043
Gyawali, R., Nwamaioha, N., Fiagbor, R., Zimmerman, T., Newman, R. H., & Ibrahim, S. A. (2019). The Role of Prebiotics in Disease Prevention and Health Promotion. In Dietary Interventions in Gastrointestinal Diseases: Foods, Nutrients, and Dietary Supplements. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814468-8.00012-0
Hallama, M., Pekrun, C., Lambers, H., & Kandeler, E. (2019). Hidden Miners – The Roles of Cover Crops and Soil Microorganisms in Phosphorus Cycling through Agroecosystems. Plant and Soil, 434(1–2), 7–45. https://doi.org/10.1007/s11104-018-3810-7
Heger, M., Zens, G., Bangalore, M., & Heger, M. P. (2018). Does the Environment Matter for Poverty Reduction? The Role of Soil Fertility and Vegetation Vigor in Poverty Reduction. Does the Environment Matter for Poverty Reduction? The Role of Soil Fertility and Vegetation Vigor in Poverty Reduction, August. https://doi.org/10.1596/1813-9450-8537
Hikouei, I. S., Kim, S. S., & Mishra, D. R. (2021). Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments. Sensors, 21(13). https://doi.org/10.3390/s21134408
Hong, S., Piao, S., Chen, A., Liu, Y., Liu, L., Peng, S., Sardans, J., Sun, Y., Peñuelas, J., & Zeng, H. (2018). Afforestation Neutralizes Soil pH. Nature Communications, 9(1), 1–7. https://doi.org/10.1038/s41467-018-02970-1
Huang, R., McGrath, S. P., Hirsch, P. R., Clark, I. M., Storkey, J., Wu, L., Zhou, J., & Liang, Y. (2019). Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microbial Biotechnology, 12(6), 1464–1475. https://doi.org/10.1111/1751-7915.13487
Igiehon, N. O., & Babalola, O. O. (2018). Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. International journal of environmental research and public health, 15(4), 574.
Jain, I., Kumar, V., & Satyanarayana, T. (2015). Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits.
Jang, J., Anderson, E. L., Venterea, R. T., Sadowsky, M. J., Rosen, C. J., Feyereisen, G. W., & Ishii, S. (2019). Denitrifying bacteria active in woodchip bioreactors at low-temperature conditions. Frontiers in Microbiology, 10, 635.
Jegadeesh, R., Lakshmanan, H., Kab-Yeul, J., Sabaratnam, V., & Raaman, N. (2018). Cultivation of Pink Oyster Mushroom Pleurotus djamor var. roseus on Various Agro-residues by Low Cost Technique. Journal of Mycopathological Research, 56(3), 213–220.
Jiang, F., Du, C., Jiang, W., Wang, L., & Du, S. kui. (2020). The Preparation, Formation, Fermentability, and Applications of Resistant Starch. International Journal of Biological Macromolecules, 150, 1155–1161. https://doi.org/10.1016/j.ijbiomac.2019.10.124
Jim, C. Y., & Ng, Y. Y. (2018). Porosity of Roadside Soil as Indicator of Edaphic Quality for Tree Planting. Ecological Engineering, 120(June), 364–374. https://doi.org/10.1016/j.ecoleng.2018.06.016
Kang, S. M., Radhakrishnan, R., You, Y. H., Khan, A. L., Park, J. M., Lee, S. M., & Lee, I. J. (2015). Cucumber Performance is Improved by Inoculation with Plant Growth-Promoting Microorganisms. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 65(1), 36–44. https://doi.org/10.1080/09064710.2014.960889
Kaur, A. P., Bhardwaj, S., Dhanjal, D. S., Nepovimova, E., Cruz‐martins, N., Kuča, K., Chopra, C., Singh, R., Kumar, H., Șen, F., Kumar, V., Verma, R., & Kumar, D. (2021). Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules, 11(3), 1–28. https://doi.org/10.3390/biom11030440
Khangwal, I., & Shukla, P. (2019). Prospecting prebiotics, innovative evaluation methods, and their health applications: a review. 3 Biotech, 9(5), 187.
Kim, H., Kim, J., Shin, S. G., Hwang, S., & Lee, C. (2016). Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source. Bioresource technology, 207, 440-445.
Kim, H. S., Titgemeyer, E. C., & Aldrich, C. G. (2023). Evaluation of Fermentability of Whole Soybeans and Soybean Oligosaccharides by a Canine In Vitro Fermentation Model. Fermentation, 9(5), 1–13. https://doi.org/10.3390/fermentation9050414
Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. (2019). Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open Journal of Soil Science, 09(09), 155–188. https://doi.org/10.4236/ojss.2019.99010
Kong, Z., Glick, B. R., Duan, J., Ding, S., Tian, J., McConkey, B. J., & Wei, G. (2015). Effects of 1-aminocyclopropane-1-carboxylate (ACC) Deaminase-Overproducing Sinorhizobium Meliloti on Plant Growth and Copper Tolerance of Medicago lupulina. Plant and Soil, 391(1–2), 383–398. https://doi.org/10.1007/s11104-015-2434-4
Krohn, C., Jin, J., Wood, J. L., Hayden, H. L., Kitching, M., Ryan, J., Fabijański, P., Franks, A. E., & Tang, C. (2021). Highly Decomposed Organic Carbon Mediates the Assembly of Soil Communities with Traits for the Biodegradation of Chlorinated Pollutants. Journal of Hazardous Materials, 404(September 2020). https://doi.org/10.1016/j.jhazmat.2020.124077
Kumar, H., Bajpai, V. K., Dubey, R. C., Maheshwari, D. K., & Kang, S. C. (2010). Wilt Disease Management and Enhancement of Growth and Yield of Cajanus Cajan (L) Var. Manak by Bacterial Combinations Amended with Chemical Fertilizer. Crop Protection, 29(6), 591–598. https://doi.org/10.1016/j.cropro.2010.01.002
Kumar, V., Kumar, M., Sharma, S., & Prasad, R. (2017). Probiotics and Plant Health. Probiotics and Plant Health, May 2022, 1–600. https://doi.org/10.1007/978-981-10-3473-2
Lastochkina, O., Garshina, D., Ivanov, S., Yuldashev, R., Khafizova, R., Allagulova, C., Fedorova, K., Avalbaev, A., Maslennikova, D., & Bosacchi, M. (2020). Seed Priming with Endophytic Bacillus subtilis Modulates Physiological Responses of Two Different Triticum aestivum L. Cultivars under Drought Stress. Plants, 9(12), 1–20. https://doi.org/10.3390/plants9121810
Li, Y., Li, H., Han, X., Han, G., Xi, J., Liu, Y., ... & Lai, H. (2022). Actinobacterial Biofertilizer Improves the Yields of Different Plants and Alters the Assembly Processes of Rhizosphere Microbial Communities. Applied Soil Ecology, 171, 104345.
Lim, S. F., & Matu, S. U. (2015). Utilization of Agro-Wastes to Produce Biofertilizer. International Journal of Energy and Environmental Engineering, 6(1), 31–35. https://doi.org/10.1007/s40095-014-0147-8
Lindström, K., & Mousavi, S. A. (2020). Effectiveness of Nitrogen Fixation in Rhizobia. Microbial Biotechnology, 13(5), 1314–1335. https://doi.org/10.1111/1751-7915.13517
Liu, Y., Wang, Y., Zhang, L., Liu, L., Cai, T., Chang, C., Sa, D., Yin, Q., Jiang, X., Li, Y., & Lu, Q. (2023). The Effect of Lactobacillus planturum YQM48 Inoculation on the Quality and Microbial Community Structure of Alfalfa Silage Cultured in Saline-Alkali Soil. Fermentation, 9(6). https://doi.org/10.3390/fermentation9060511
Lockyer, S., & Stanner, S. (2019). Prebiotics – An Added Benefit of Some Fibre Types. Nutrition Bulletin, 44(1), 74–91. https://doi.org/10.1111/nbu.12366
Lou, Z., Sun, Y., Bian, S., Ali Baig, S., Hu, B., & Xu, X. (2017). Nutrient Conservation during Spent Mushroom Compost Application using Spent Mushroom Substrate Derived Biochar. Chemosphere, 169, 23–31. https://doi.org/10.1016/j.chemosphere.2016.11.044
Lyng, M., & Kovács, Á. T. (2023). Frenemies of the Soil: Bacillus and Pseudomonas Interspecies Interactions. Trends in Microbiology, 31(8), 845–857. https://doi.org/10.1016/j.tim.2023.02.003
Ma, K., Zhang, Y., Ruan, M., Guo, J., & Chai, T. (2019). Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions. International Journal of Environmental Research and Public Health, 16(20). https://doi.org/10.3390/ijerph16203929
Mahanty, T., Bhattacharjee, S., & Goswami, M. (2016). Biofertilizers: A Potential Approach for Sustainable Agriculture Development. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-8104-0
Mahmud, M. S., & Chong, K. P. (2021). Formulation of Biofertilizers from Oil Palm Empty Fruit Bunches and Plant Growth-Promoting Microbes: A Comprehensive and Novel Approach Towards Plant Health. Journal of King Saud University-Science, 33(8), 101647.
Martins, G. N., Ureta, M. M., Tymczyszyn, E. E., Castilho, P. C., & Gomez-Zavaglia, A. (2019). Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Frontiers in Nutrition, 6(May). https://doi.org/10.3389/fnut.2019.00078
Maximillian, J., Brusseau, M. L., Glenn, E. P., & Matthias, A. D. (2019). Pollution and Environmental Perturbations in the Global System. In Environmental and Pollution Science (3rd ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814719-1.00025-2
Mendoza-Arroyo, G. E., Chan-Bacab, M. J., Aguila-Ramírez, R. N., Ortega-Morales, B. O., Canche Solis, R. E., Chab-Ruiz, A. O., ... & Camacho-Chab, J. C. (2020). Inorganic phosphate solubilization by a novel isolated bacterial strain Enterobacter sp. ITCB-09 and its application potential as biofertilizer. Agriculture, 10(9), 383.
Menendez, E., & Garcia-Fraile, P. (2017). Plant Probiotic Bacteria: Solutions to Feed the World. AIMS Microbiology, 3(4), 747–748. https://doi.org/10.3934/microbiol.2017.4.747
Milić, S., Ninkov, J., Zeremski, T., Latković, D., Šeremešić, S., Radovanović, V., & Žarković, B. (2019). Soil Fertility and Phosphorus Fractions in a Calcareous Chernozem after a Long-Term Field Experiment. Geoderma, 339(March 2018), 9–19. https://doi.org/10.1016/j.geoderma.2018.12.017
Moghana, A., & Sumathy, J. H. (2020). Production of Liquid Biofertilizers from Cotton Cheese Whey. International Journal of Current Research in Multidisciplinary, 5(1), 28-34.
Msimbira, L. A., & Smith, D. L. (2020). The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. Frontiers in Sustainable Food Systems, 4(July), 1–14. https://doi.org/10.3389/fsufs.2020.00106
Muñoz-Rojas, M. (2018). Soil Quality Indicators: Critical Tools in Ecosystem Restoration. Current Opinion in Environmental Science and Health, 5, 47–52. https://doi.org/10.1016/j.coesh.2018.04.007
Mushtaq, Z., Mushtaq, H., Faizan, S., & Parray, M. A. (2021). Microbial degradation of organic constituents for sustainable development. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs (Vol. 2). https://doi.org/10.1007/978-3-030-61010-4_5
Mutanda, T., Mokoena, M. P., Olaniran, A. O., Wilhelmi, B. S., & Whiteley, C. G. (2014). Microbial Enzymatic Production and Applications of Short-Chain Fructooligosaccharides and Inulooligosaccharides: Recent Advances and Current Perspectives. Journal of Industrial Microbiology and Biotechnology, 41(6), 893–906. https://doi.org/10.1007/s10295-014-1452-1
Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019(3). https://doi.org/10.1155/2019/5794869
Nimnoi, P., Pongsilp, N., & Lumyong, S. (2014). Co-Inoculation of Soybean (Glycine Max) with Actinomycetes and Bradyrhizobium Japonicum Enhances Plant Growth, Nitrogenase Activity and Plant Nutrition. Journal of Plant Nutrition, 37(3), 432–446. https://doi.org/10.1080/01904167.2013.864308
Nordberg Karlsson, E., Schmitz, E., Linares-Pastén, J. A., & Adlercreutz, P. (2018). Endo-xylanases as Tools for Production of Substituted Xylooligosaccharides with Prebiotic Properties. Applied Microbiology and Biotechnology, 102(21), 9081–9088. https://doi.org/10.1007/s00253-018-9343-4
Palaniappan, A., Antony, U., & Emmambux, M. N. (2021). Current Status of Xylooligosaccharides: Production, Characterization, Health Benefits and Food Application. Trends in Food Science and Technology, 111, 506–519. https://doi.org/10.1016/j.tifs.2021.02.047
Pandurang Gurav, P. (2018). A review on Soil Potassium Scenario in Vertisols of India. Open Access Journal of Science, 2(1), 90–91. https://doi.org/10.15406/oajs.2018.02.00051
Pérez-López, E., Cela, D., Costabile, A., Mateos-Aparicio, I., & Rupérez, P. (2016). In Vitro Fermentability and Prebiotic Potential of Soyabean Okara by Human Faecal Microbiota. British Journal of Nutrition, 116(6), 1116–1124. https://doi.org/10.1017/S0007114516002816
Prakamhang, J., Tittabutr, P., Boonkerd, N., Teamtisong, K., Uchiumi, T., Abe, M., & Teaumroong, N. (2015). Proposed Some Interactions at Molecular Level of PGPR Coinoculated with Bradyrhizobium Diazoefficiens USDA110 and B. Japonicum THA6 on Soybean Symbiosis and its Potential of Field Application. Applied Soil Ecology, 85(did), 38–49. https://doi.org/10.1016/j.apsoil.2014.08.009
Rahimi, S., Modin, O., & Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 43, 107570.
Rashid, A., Mir, M. R., & Hakeem, K. R. (2016). Biofertilizer use for sustainable agricultural production. Plant, Soil and Microbes: Volume 1: Implications in Crop Science, 163-180.
Redondo-Cuenca, A., García-Alonso, A., Rodríguez-Arcos, R., Castro, I., Alba, C., Miguel Rodríguez, J., & Goñi, I. (2023). Nutritional Composition of Green Asparagus (Asparagus Officinalis L.), Edible Part and By-Products, and Assessment of Their Effect on the Growth of Human Gut-Associated Bacteria. Food Research International, 163(November 2022). https://doi.org/10.1016/j.foodres.2022.112284
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem Across Age, Environment, Diet, and Diseases. Microorganisms, 7(1). https://doi.org/10.3390/microorganisms7010014
Rosenblueth, M., Ormeño-Orrillo, E., López-López, A., Rogel, M. A., Reyes-Hernández, B. J., Martínez-Romero, J. C., Reddy, P. M., & Martínez-Romero, E. (2018). Nitrogen Fixation in Cereals. Frontiers in Microbiology, 9(AUG), 1–13. https://doi.org/10.3389/fmicb.2018.01794
Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Effect of Pineapple Waste Powder on Probiotic Growth, Antioxidant and Antimutagenic Activities of Yogurt. Journal of Food Science and Technology, 53(3), 1698–1708. https://doi.org/10.1007/s13197-015-2100-0
Santos, M. S., Nogueira, M. A., & Hungria, M. (2019). Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9(1). https://doi.org/10.1186/s13568-019-0932-0
Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., Meena, V. S., Farooq, M., Singh, R., Rahman, M., & Meena, H. N. (2019). Perspectives of Potassium Solubilizing Microbes in Sustainable Food Production System: A Review. Applied Soil Ecology, 133(September), 146–159. https://doi.org/10.1016/j.apsoil.2018.09.012
Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus Species in Soil as a Natural Resource for Plant Health and Nutrition. Journal of Applied Microbiology, 128(6), 1583–1594. https://doi.org/10.1111/jam.14506
Scott, K. P., Martin, J. C., Duncan, S. H., & Flint, H. J. (2014). Prebiotic Stimulation of Human Colonic Butyrate-Producing Bacteria and Bifidobacteria, In Vitro. FEMS Microbiology Ecology, 87(1), 30–40. https://doi.org/10.1111/1574-6941.12186
Shie-Lih, T., Chen-Chung, K., & Ling, H. S. (2020). Recent Advance in Extraction of Prebiotics from Plants: A Review. International Journal of Biomass and Renewables, 9(2), 14-21.
Sneha, S., Anitha, B., Sahair, R. A., Raghu, N., Gopenath, T. S., Chandrashekrappa, G. K., & Basalingappa, M. K. (2018). Biofertilizer for crop production and soil fertility, 299-306.
Sofo, A., Ricciuti, P., Fausto, C., Mininni, A. N., Crecchio, C., Scagliola, M., Malerba, A. D., Xiloyannis, C., & Dichio, B. (2019). The Metabolic and Genetic Diversity of Soil Bacterial Communities Depends on the Soil Management System and C/N Dynamics: The Case of Sustainable and Conventional Olive Groves. Applied Soil Ecology, 137(February), 21–28. https://doi.org/10.1016/j.apsoil.2018.12.022
Soua, L., Koubaa, M., Barba, F. J., Fakhfakh, J., Ghamgui, H. K., & Chaabouni, S. E. (2020). Water-Soluble Polysaccharides from Ephedra alata Stems: Structural Characterization, Functional Properties, and Antioxidant Activity. Molecules, 25(9). https://doi.org/10.3390/MOLECULES25092210
Stewart, Z. P., Pierzynski, G. M., Middendorf, B. J., & Vara Prasad, P. V. (2020). Approaches to improve soil fertility in sub-Saharan Africa. Journal of Experimental Botany, 71(2), 632–641. https://doi.org/10.1093/jxb/erz446
Strachel, R., Wyszkowska, J., & Baćmaga, M. (2017). The Role of Compost in Stabilizing the Microbiological and Biochemical Properties of Zinc-Stressed Soil. Water, Air, and Soil Pollution, 228(9). https://doi.org/10.1007/s11270-017-3539-6
Sustr, M., Soukup, A., & Tylova, E. (2019). Potassium in Root Growth and Development. Plants, 8(10). https://doi.org/10.3390/plants8100435
Tachon, S., Zhou, J., Keenan, M., Martin, R., & Marco, M. L. (2013). The Intestinal Microbiota in Aged Mice is Modulated by Dietary Resistant Starch and Correlated With Improvements in Host Responses. FEMS Microbiology Ecology, 83(2), 299–309. https://doi.org/10.1111/j.1574-6941.2012.01475.x
Taiseer, M., Youssef, M. M., & Moharrm, H. A. (2014). Analysis, health benefits and applications of prebiotics: A review. Alexandria Journal of Food Science and Technology, 11(2), 25-37.
Tan, H., Chen, W., Liu, Q., Yang, G., & Li, K. (2018). Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Frontiers in Immunology, 9(JUN), 1–13. https://doi.org/10.3389/fimmu.2018.01504
Teles, E. A. P., Xavier, J. F., Arcênio, F. S., Amaya, R. L., Gonçalves, J. V. S., Rouws, L. F. M., ... & Coelho, I. S. (2024). Characterization and evaluation of potential halotolerant phosphate solubilizing bacteria from Salicornia fruticosa rhizosphere. Frontiers in Plant Science, 14, 1324056.
Thatoi, H., Singdevsachan, S. K., & Patra, J. K. (2018). Prebiotics and Their Production From Unconventional Raw Materials (Mushrooms). In Therapeutic, Probiotic, and Unconventional Foods. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814625-5.00005-4
Thomas, A., Barczak, A., & Zakhia-Rozis, N. (2022). Sustainable food systems for food security: Need for combination of local and global approaches. https://library.oapen.org/handle/20.500.12657/57580%0Ahttps://library.oapen.org/bitstream/handle/20.500.12657/57580/9782759235766.pdf?sequence=1
Tzounis, X., Rodriguez-Mateos, A., Vulevic, J., Gibson, G. R., Kwik-Uribe, C., & Spencer, J. P. E. (2011). Prebiotic Evaluation of Cocoa-Derived Flavanols in Healthy Humans by using a Randomized, Controlled, Double-Blind, Crossover Intervention Study. American Journal of Clinical Nutrition, 93(1), 62–72. https://doi.org/10.3945/ajcn.110.000075
Vassileva, M., Flor-Peregrin, E., Malusá, E., & Vassilev, N. (2020). Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. Frontiers in Plant Science, 11(July), 1–5. https://doi.org/10.3389/fpls.2020.01068
Vassilev, N., & de Oliveira Mendes, G. (2018). Solid-State Fermentation and Plant-Beneficial Microorganisms. Current Developments in Biotechnology and Bioengineering (pp. 435-450). Elsevier.
Vazquez-Olivo, G., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2019). Prebiotic Compounds from Agro-Industrial By-Products. Journal of Food Biochemistry, 43(6), 1–8. https://doi.org/10.1111/jfbc.12711
Vengadaramana, A., & Jashothan, P. T. J. (2012). Effect of Organic Fertilizers on the Water Holding Capacity of Soil in Different Terrains of Jaffna Peninsula in Sri Lanka. Journal of Natural Product and Plant Resources, 2012(4), 500–503. http://scholarsresearchlibrary.com/archive.html
Wang, M., & Cheong, K. L. (2023). Preparation, structural characterisation, and bioactivities of fructans: A review. Molecules, 28(4), 1613.
Wang, X., Huang, M., Yang, F., Sun, H., Zhou, X., Guo, Y., Wang, X., & Zhang, M. (2015). Rapeseed Polysaccharides as Prebiotics on Growth and Acidifying Activity of Probiotics In Vitro. Carbohydrate Polymers, 125, 232–240. https://doi.org/10.1016/j.carbpol.2015.02.040
Wang, X. W., Cai, H., Liu, Y. L., Li, C. L., Wan, Y. S., Song, F. P., & Chen, W. F. (2019). Addition of organic fertilizer affects soil nitrogen availability in a salinized fluvo-aquic soil. Environmental Pollutants and Bioavailability, 31(1), 331-338.
Wang, X., & Komatsu, S. (2022). The Role of Phytohormones in Plant Response to Flooding. International Journal of Molecular Sciences, 23(12). https://doi.org/10.3390/ijms23126383
Wichienchot, S., Thammarutwasik, P., Jongjareonrak, A., Chansuwan, W., Hmadhlu, P., Hongpattarakere, T., ... & Ooraikul, B. (2011). Extraction and Analysis of Prebiotics from Selected Plants from Southern Thailand. Songklanakarin Journal of Science & Technology, 33(5).
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil Organic Carbon Storage as a Key Function of Soils - A Review of Drivers and Indicators at Various Scales. Geoderma, 333(November 2017), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
Woo, S. L., & Pepe, O. (2018). Microbial consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 9(2003), 7–12. https://doi.org/10.3389/fpls.2018.01801
World, T., & Group, B. (2018). Food Security and Nutrition: Challenges for Agriculture and the Hidden Potential of Soil a Report to the G20 Agriculture Deputies Food and Agriculture Organization of the United Nations (FAO), and Organization of Economic Co-operation and Development (OEC. www.fao.org/publications
Xavier, G. R., Jesus, E. de C., Dias, A., Coelho, M. R. R., Molina, Y. C., & Rumjanek, N. G. (2023). Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. Plants, 12(4). https://doi.org/10.3390/plants12040954
Yi, J., Sheng, G., Suo, Z., Zhong, K., Qi, S., Dan, Z., Hui, Y., Li, P., & Lin, J. (2020). Biofertilizers with Beneficial Rhizobacteria Improved Plant Growth and Yield in Chili (Capsicum annuum L.). World Journal of Microbiology and Biotechnology, 1–12. https://doi.org/10.1007/s11274-020-02863-w
Yousfi, S., Marín, J., Parra, L., Lloret, J., & Mauri, P. V. (2021). A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass. Agronomy, 11(3), 1–14. https://doi.org/10.3390/agronomy11030573
Yuan, G., Huan, W., Song, H., Lu, D., Chen, X., Wang, H., & Zhou, J. (2021). Effects of Straw Incorporation and Potassium Fertilizer on Crop Yields, Soil Organic Carbon, and Active Carbon in the Rice–Wheat System. Soil and Tillage Research, 209(February), 104958. https://doi.org/10.1016/j.still.2021.104958
Zandi, P., & Schnug, E. (2022). Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology, 11(2), 1–30. https://doi.org/10.3390/biology11020155
Zhang, M. Y., & Cai, J. (2023). Preparation of Branched RG-I-Rich Pectin from Red Dragon Fruit Peel and the Characterization of its Probiotic Properties. Carbohydrate Polymers, 299, 120144.
Zhao, Z., Mao, Y., Gao, S., Lu, C., Pan, C., & Li, X. (2023). Organic Carbon Accumulation and Aggregate Formation in Soils under Organic and Inorganic Fertilizer Management Practices in a Rice–Wheat Cropping System. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-30541-y