Antibacterial and Antibiofilm Properties of Zingiber officinale and Kaempferia parviflora Against Staphylococcus aureus

Authors

  • Nuraihanah Najihah Zaidi
  • Wan Rosmiza Zana Wan Dagang Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
  • Raihana Ridzuan Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia https://orcid.org/0000-0001-6861-2263

DOI:

https://doi.org/10.11113/bioprocessing.v4n2.77

Keywords:

Staphylococcus aureus, Zingiber officinale, Kaempferia parviflora, Antibacteria, Antibiofilm

Abstract

Staphylococcus aureus is a pathogenic bacterium whose biofilm-forming ability contributes to resistance against antibacterial treatments, highlighting the need for alternative strategies using plant extracts. This study evaluated the antibacterial and antibiofilm properties of Zingiber officinale (normal ginger) and Kaempferia parviflora (black ginger) ethanolic extracts against S. aureus, focusing on extraction yield, total phenolic content (TPC), functional group characterization (ATR-FTIR) and their efficacy in inhibiting S. aureus growth (disc diffusion assay) and biofilm formation (biofilm assay). K. parviflora yielded 3.05% extract compared to 0.57% for Z. officinale but Z. officinale had a slightly higher TPC (43.03 mg GAE/100 g) compared to K. parviflora (39.83 mg GAE/100 g). ATR-FTIR analysis predicted the presence of phenols, alkane and aromatic functional group in both extracts. Antibacterial assay showed that only K. parviflora extract inhibited S. aureus, with an 8.33 mm zone of inhibition at the tested concentrations. For biofilm assay, K. parviflora extract effectively inhibited S. aureus biofilm formation after seven days, with the highest inhibition of 59.92%. Overall, K. parviflora demonstrated promising potential as a plant-based antibacterial and antibiofilm agent against S. aureus.

References

Abdul Qadir, M., Shahzadi, S. K., Bashir, A., Munir, A., & Shahzad, S. (2017). Evaluation of phenolic compounds and antioxidant and antimicrobial activities of some common herbs. International Journal of Analytical Chemistry, 2017(1), 3475738. https://doi.org/https://doi.org/10.1155/2017/3475738

Agnaou, N., Lezar, Z., Belmouden, A., & Houari, A. (2021). Overview of health benefits of Zingiber officinale extracts : An update. (IJRE) International Journal of Research and Ethics (ISSN 2665-7481), 4(1), 44–56. https://doi.org/10.51766/ijre.v4i1.179

Aidiel, M., Mutalib, M. A., Azman, A. K., Khalid, K., Ramli, N. N. N., Ramasamy, R., Tang, S. G. H., & Adam, S. H. (2024). Enhancing the total polyphenol content and antioxidant activity of Kaempferia parviflora through optimized binary solvent extraction: Isolation and characterization of major PMF metabolite. Malaysian Journal of Chemistry, 26(6), 106–120. https://doi.org/10.55373/mjchem.v26i6.106

Al-Areer, N., Al Azzam, K., Al Omari, R., Al-Deeb, I., Bekbayeva, L., & Negim, E.-S. (2023). Quantitative analysis of total phenolic and flavonoid compounds in different extracts from ginger plant (Zingiber officinale) and evaluation of their anticancer effect against colorectal cancer cell lines. Farmatsiia, 70, 905–919. https://doi.org/10.3897/pharmacia.70.e103936

Asamenew, G., Kim, H.-W., Lee, M.-K., Lee, S.-H., Kim, Y. J., Cha, Y.-S., Yoo, S. M., & Kim, J.-B. (2019). Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. European Food Research and Technology, 245(3), 653–665. https://doi.org/10.1007/s00217-018-3188-z

Azwanida, N. (2015). A Review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal & Aromatic Plants, 04(03). https://doi.org/10.4172/2167-0412.1000196

Bitwell, C., Indra, S. Sen, Luke, C., & Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. In Scientific African (Vol. 19). Elsevier B.V. https://doi.org/10.1016/j.sciaf.2023.e01585

Chen, D., Li, H., Li, W., Feng, S., & Deng, D. (2018). Kaempferia parviflora and Its methoxyflavones: chemistry and biological activities. Evidence-Based Complementary and Alternative Medicine, 2018, 4057456. https://doi.org/10.1155/2018/4057456

Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry. Wiley. https://doi.org/10.1002/9780470027318.a5606

Das, A., Dey, S., Sahoo, R. K., Sahoo, S., & Subudhi, E. (2019). Antibiofilm and antibacterial activity of essential oil bearing Zingiber officinale Rosc. (Ginger) rhizome against multi-drug resistant isolates. Journal Of Essential Oil Bearing Plants, 22(4), 1163–1171. https://doi.org/10.1080/0972060X.2019.1683080

Donlan, R. (2000). Role of biofilms in antimicrobial resistance. ASAIO Journal (American Society for Artificial Internal Organs : 1992), 46, S47-52. https://doi.org/10.1097/00002480-200011000-00037

Edo, G. I., Onoharigho, F. O., Jikah, A. N., Ezekiel, G. O., Essaghah, A. E. A., Ekokotu, H. A., Ugbune, U., Oghroro, E. E. A., Emakpor, O. L., Ainyanbhor, I. E., Akpoghelie, P. O., Ojulari, A. E., Okoronkwo, K. A., & Owheruo, J. O. (2024). Evaluation of the physicochemical, phytochemical and anti-bacterial potential of Zingiber officinale (ginger). Food Chemistry Advances, 4. https://doi.org/10.1016/j.focha.2024.100625

Eze, F. N., Jansakul, C., & Srichana, T. (2023). Insights into the formulation properties, biocompatibility, and permeability of poorly water-soluble methoxyflavones with PEG400 and propylene glycol. Acta Pharmaceutica, 73(3), 385–404. https://doi.org/10.2478/acph-2023-0030

Idrees, M., Sawant, S., Karodia, N., & Rahman, A. (2021). Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health, 18(14). https://doi.org/10.3390/ijerph18147602

Kaplan, J., Mlynek, K., Hettiarachchi, H., Alamneh, Y., Biggemann, L., Zurawski, D., Black, C., Bane, C., Kim, R., & Granick, M. (2018). Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLOS ONE, 13, e0205526. https://doi.org/10.1371/journal.pone.0205526

Krakowska-Sieprawska, A., Kiełbasa, A., Rafińska, K., Ligor, M., & Buszewski, B. (2022). Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. In Molecules (Vol. 27, Issue 3). MDPI. https://doi.org/10.3390/molecules27030730

Krongrawa, W., Limmatvapirat, S., Vollrath, M. K., Kittakoop, P., Saibua, S., & Limmatvapirat, C. (2023). Fabrication, optimization, and characterization of antibacterial electrospun shellac fibers loaded with Kaempferia parviflora extract. Pharmaceutics, 15(1). https://doi.org/10.3390/pharmaceutics15010123

Leswara, D. F., & Larasati, D. (2024). Antibacterial potential of Kaempferia parviflora rhizome extract against Staphylococcus aureus ATCC 25923. In Journal of Food and Pharmaceutical Sciences, (Vol. 2024, Issue 3). www.journal.ugm.ac.id/v3/JFPS

Mala, S., Thaweboon, S., Luksamijarukul, P., Thaweboon, B., Saranpuetti, C., & Kaypetch, R. (2018). Effect of Kaempferia parviflora on Streptococcus mutans biofilm formation and its cytotoxicity. Key Engineering Materials, 773, 328–332. https://doi.org/10.4028/www.scientific.net/KEM.773.328

Manousi, N., Sarakatsianos, I., & Samanidou, V. (2019). Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering Tools in the Beverage Industry: Volume 3: The Science of Beverages (pp. 283–314). Elsevier. https://doi.org/10.1016/B978-0-12-815258-4.00010-X

Mustafa, I., & Chin, N. L. (2023). Antioxidant properties of dried ginger (Zingiber officinale Roscoe) var. Bentong. Foods, 12(1). https://doi.org/10.3390/foods12010178

Ohaegbu, C. G., Ngene, A. C., & Alisigwe, C. V. (2022). GC-MS Analysis, antibacterial and antibiofilm activities of extracts of Zingiber officinalis against Staphylococcus aureus and Pseudomonas aeruginosa. Pharmacology and Toxicology of Natural Medicines (ISSN: 2756-6838), 2(1), 25–36. https://doi.org/10.52406/ptnm.v2i1.19

Pharmawati, M., & Wrasiati, L. P. (2020). Phytochemical screening and FTIR spectroscopy on crude extract from Enhalus acoroides Leaves (Saringan fitokimia dan spektroskopi ftir ekstrak mentah daun Enhalus acoroides). In Malaysian Journal of Analytical Sciences (Vol. 24).

Ridzuan, R. (2013). Micropropagation, Chemical Profiling and Bioassays of Alpinia conchigera Griff. Universiti Putra Malaysia.

Ridzuan, R., Rafii, M., Mohammad Yusoff, M., Ismail, S., Miah, G., & Usman, M. G. (2018). Genetic diversity analysis of selected Capsicum annuum genotypes based on morphophysiological, yield characteristics and their biochemical properties. Journal of the Science of Food and Agriculture, 99. https://doi.org/10.1002/jsfa.9169

Saeloh, D., & Visutthi, M. (2021). Efficacy of thai plant extracts for antibacterial and anti-biofilm activities against pathogenic bacteria. Antibiotics, 10(12). https://doi.org/10.3390/antibiotics10121470

Sharif, M. F., & Bennett, M. T. (2016). The effect of different methods and solvents on the extraction of polyphenols in ginger (Zingiber officinale). Jurnal Teknologi, 78(11–2).

Sitthichai, P., Chanpirom, S., Maneerat, T., Charoensup, R., Tree-Udom, T., Pintathong, P., Laphookhieo, S., & Sripisut, T. (2022). Kaempferia parviflora rhizome extract as potential anti-acne ingredient. Molecules, 27(14). https://doi.org/10.3390/molecules27144401

Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Cirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis, 115(8), 891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

Suresh, M. K., Biswas, R., & Biswas, L. (2019). An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. International Journal of Medical Microbiology, 309(1), 1–12. https://doi.org/https://doi.org/10.1016/j.ijmm.2018.11.002

Terouzi, W., & Oussama, A. (2016). Evaluation of ginger adulteration with beans using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and multivariate analysis. International Journal of Engineering and Applied Sciences, 3(7).

Uckoo, R. M., Jayaprakasha, G. K., Vikram, A., & Patil, B. S. (2015). Polymethoxyflavones Isolated from the peel of Miaray Mandarin (Citrus miaray) have biofilm inhibitory activity in vibrio harveyi. Journal of Agricultural and Food Chemistry, 63(32), 7180–7189. https://doi.org/10.1021/acs.jafc.5b02445

Yassen, D., & Ibrahim, A. E. (2016). Antibacterial activity of crude extracts of ginger (Zingiber officinale Roscoe) on Escherichia coli and Staphylococcus aureus: A study in vitro. Indo American Journal of Pharmaceutical Research. www.iajpr.com

Yunus, J., Wan Dagang, W. R. Z., Jamaluddin, H., Jemon, K., Mohamad, S. E., & Jonet, M. A. (2024). Bacterial biofilm growth and perturbation by serine protease from Bacillus sp. Archives of Microbiology, 206(4), 138. https://doi.org/10.1007/s00203-024-03857-0

Downloads

Published

2025-12-30

Issue

Section

Articles