Effect of Alkaline Concentration and Temperature on Lignin Extraction from Sugarcane Bagasse

Authors

  • Chok Yong Xin Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia.
  • Alia Sabrina Zulkornain Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia.
  • Harisun Ya'akob Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia.
  • Syazwani Mahmad Puzi Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
  • Nur Izyan Wan Azelee Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia.

DOI:

https://doi.org/10.11113/bioprocessing.v3n1.44

Keywords:

Sugarcane bagasse, Lignin, UV protection, SPF

Abstract

Sugarcane (Saccharum officinarum L.) is used in various applications, including the production of raw sugar, to be consumed, either directly as food or sugarcane juice. It is reported that 1 ton of sugarcane would generate nearly 280 kg of bagasse and they would be burnt up and leads to air pollution. In fact, sugarcane bagasse contains high lignin content, having Ultraviolet (UV) protection properties. The objective of this study is to determine the best concentration of sodium hydroxide and temperature to extract high yield of lignin for UV protection properties. In this project, sugarcane bagasse is collected from hawker stall in Taman Universiti, Skudai, Johor, Malaysia. The lignin composition in sugarcane bagasse was analyzed, giving 16.7± 4.8 wt% of sugarcane bagasse. Alkali extraction of sugarcane bagasse has been carried out by using different concentration of sodium hydroxide (NaOH) (2%, 4%, 6%, 8%, 10%) and temperatures (60 °C, 80 °C, 100 °C, 120 °C, 140 °C) in water bath at a fixed time, 1 hour. According to the experiment conducted, the best condition is 10% NaOH concentration, temperature of 100 °C for 1 hour, as the highest yield of lignin can be extracted, which is 55.8±1.92 wt%, with a purity of 28.1±10.75%.  Ultraviolet protection properties of lignin had been analyzed by determining the Sun Protection Factor (SPF). It was done by blending different concentration of lignin into a base cream. The SPF achieved for 5% lignin-blended cream was 4.76 and for 10% lignin-blended cream was 5.78 respectively.

References

Aminudin, E., Khalid, N. H. A., Azman, N. A., Bakri, K., Din, M. F. M., Zakaria, R., & Zainuddin, N. A. (2017). Utilization of Baggase Waste Based Materials as Improvement for Thermal Insulation of Cement Brick. In MATEC Web of Conferences (Vol. 103, p. 01019). EDP Sciences.

Antunes, F., Mota, I. F., Fangueiro, J. F., Lopes, G., Pintado, M., & Costa, P. S. (2023). From Sugarcane to Skin: Lignin as a Multifunctional Ingredient for Cosmetic Application. International Journal of Biological Macromolecules. 234, 123592.

Ariyanta, H. A., Santoso, E. B., Suryanegara, L., Arung, E. T., Kusuma, I. W., Taib, M. N. A. M., ... & Fatriasari, W. (2023). Recent Progress on the Development of Lignin as Future Ingredient Biobased Cosmetics. Sustainable Chemistry and Pharmacy. 32, 100966.

Asem, M., Jimat, D. N., Jafri, N. H. S., Nawawi, W. M. F. W., Azmin, N. F. M., & Abd Wahab, M. F. (2023). Entangled Cellulose Nanofibers Produced from Sugarcane Bagasse via Alkaline Treatment, Mild Acid Hydrolysis Assisted with Ultrasonication. Journal of King Saud University-Engineering Sciences. 35(1), 24-31.

Barciela, P., Perez-Vazquez, A., Fraga-Corral, M., & Prieto, M. A. (2023). Utility Aspects of Sugarcane Bagasse as a Feedstock for Bioethanol Production: Leading Role of Steam Explosion as a Pretreatment Technique. Processes. 11(11), 3116.

Carvalho, M. J., liveira, A. L., Pedrosa, S. S., Pintado, M., & Madureira, A.R. (2021). Potential of Sugarcane Extracts as Cosmetic and Skincare Ingredients. Industrial Crops and Products. 169, 113625.

Chauhan, K., Kumar, A., Goswami, K., Negi, L., Chauhan, A., Madan, K., & Jain, S. (2023). Lignin Extraction from Lignocellulosic Biomass (Sugarcane Bagasse) and Its Potential Application as a Feedstock for Fuel Production. Materials Today: Proceedings. 78, 688–694. https://doi.org/https://doi.org/10.1016/j.matpr.2022.12.190

Chen, H. (2015). Lignocellulose Biorefinery Feedstock Engineering. Lignocellulose Biorefinery Engineering. 37-86.

Dhara, S., Samanta, N. S., Uppaluri, R., & Purkait, M. K. (2023). High-Purity Alkaline Lignin Extraction from Saccharum ravannae and Optimization of Lignin Recovery Through Response Surface Methodology. International Journal of Biological Macromolecules. 234, 123594. https://doi.org/10.1016/j.ijbiomac.2023.123594

Department of Agriculture (DOA). (2017). Vegetables and Cash Crop Statistic Malaysia, 2017. Malaysia Department of Agriculture.https://www.doa.gov.my/index.php/pages/view/622?mid=239.

Frederiksen, H., Krause, M., Jørgensen, N., Rehfeld, A., Skakkebæk, N. E., & Andersson, A. (2020). UV filters in Matched Seminal Fluid-, Urine-, and Serum Samples from Young Men. Journal of Exposure Science & Environmental Epidemiology. 31(2), 345–355. https://doi.org/10.1038/s41370-020-0209-3

Ji, Q., Yu, X., Wu, P., Yagoub, A. E.-G. A., Chen, L., Abdullateef Taiye, M., & Zhou, C. (2021). Pretreatment of Sugarcane Bagasse with Deep Eutectic Solvents Affect the Structure and Morphology of Lignin. Industrial Crops and Products. 173, 114108. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114108

Jõul, P., Ho, T. T., Kallavus, U., Konist, A., Leiman, K., Salm, O. S., ... & Lukk, T. (2022). Characterization of Organosolv Lignins and Their Application in the Preparation of Aerogels. Materials. 15(8), 2861.

Jung, W., Savithri, D., Sharma-Shivappa, R., & Kolar, P. (2020). Effect of Sodium Hydroxide Pretreatment on Lignin Monomeric Components of Miscanthus× giganteus and Enzymatic Hydrolysis. Waste and Biomass Valorization. 11, 5891-5900.

Kim, G., & Um, B. (2020). Fractionation and Characterization of Lignins from Miscanthus via Organosolv and Soda Pulping for Biorefinery Applications. International Journal of Biological Macromolecules. 158, 443–451. https://doi.org/10.1016/j.ijbiomac.2020.04.229

Kirar, S., Mohne, D., Singh, M., Sagar, V., Bhise, A., Goswami, S., & Bhaumik, J. (2024). Eco-friendly Lignin Nanocomposite Films as Advanced UV Protective and Antimicrobial Sustainable Packaging Materials. Sustainable Materials and Technologies. 40, e00864. https://doi.org/10.1016/J.SUSMAT.2024.E00864

Lee, S. C., Tran, T. M. T., Choi, J. W., & Won, K. (2019). Lignin for White Natural Sunscreens. International Journal of Biological Macromolecules. 122, 549-554.

Lee, S. C., Yoo, E., Lee, S. H., & Won, K. (2020). Preparation and Application of Light-Colored Lignin Nanoparticles for Broad-Spectrum Sunscreens. Polymers. 12(3), 699.

Lin, M., Yang, L., Zhang, H., Xia, Y., He, Y., Lan, W., ... & Lu, F. (2021). Revealing the Structure-Activity Relationship between Lignin and Anti-UV Radiation. Industrial Crops and Products. 174, 114212. https://doi.org/10.3390/polym12030699

Lobato-Peralta, D. R., Duque-Brito, E., Villafan-Vidales, H. I., Longoria, A., Sebastian, P. J., Cuentas-Gallegos, A. K., ... & Okoye, P. U. (2021). A review on Trends in Lignin Extraction and Valorization of Lignocellulosic Biomass for Energy Applications. Journal of Cleaner Production. 293, 126123.

Lv, S., Liang, S., Zuo, J., Zhang, S., Wang, J., & Wei, D. (2023). Lignin-based Anti-UV Functional Materials: Recent Advances in Preparation and Application. Iranian Polymer Journal. 32(11), 1477–1497. https://doi.org/10.1007/s13726-023-01218-0

Mokhena, T. C., Mochane, M. J., Motaung, T. E., Linganiso, L. Z., Thekisoe, O. M., & Songca, S. P. (2018). Sugarcane Bagasse and Cellulose Polymer Composites. Sugarcane-technology and Research. 225-40.

Molins-Delgado, D., Del Mar Olmo-Campos, M., Valeta-Juan, G., Pleguezuelos-Hernández, V., Barceló, D., & Díaz˗Cruz, M. S. (2018). Determination of UV Filters in Human Breast Milk using Turbulent Flow Chromatography and Babies’ Daily Intake Estimation. Environmental Research. 161, 532–539. https://doi.org/10.1016/j.envres.2017.11.033

Morales, A., Gullon, B., Davila, I., Eibes, G., Labidi, J., & Gullon, P. (2018). Optimization of Alkaline Pretreatment for the Co-Production of Biopolymer Lignin and Bioethanol from Chestnut Shells Following a Biorefinery Approach. Industrial Crops and Products. 124, 582-592.

Moubarik, A., Grimi, N., Boussetta, N., & Pizzi, A. (2013). Isolation and Characterization of Lignin from Moroccan Sugar Cane Bagasse: Production Of Lignin–Phenol-Formaldehyde Wood Adhesive. Industrial Crops and Products. 45, 296-302.

Muñoz, M., Rosero, M., García, A. N., & Marcilla, A. (2024). Effect of Alkaline Catalysts on the Valorization of Sugarcane Bagasse via Pyrolysis. Industrial Crops and Products. 211, 118225. https://doi.org/10.1016/J.INDCROP.2024.118225

Nazir, M. H., Ayoub, M., Shamsuddin, R. B., Zahid, I., & Zulqarnain. (2020). Sulfonated Activated Sugarcane Bagasse as Heterogeneous Catalyst for Biodiesel Production From Waste Cooking Oil via Microwave Irradiation. Advances in Engineering Research. 200. https://doi.org/10.2991/aer.k.201229.037

Paulsson, M., & Parkås, J. (2012). Light-induced Yellowing of Lignocellulosic Pulps-Mechanisms and Preventive Methods. BioResources. 7(4), 5995-6040.

Ratanasumarn, N., & Chitprasert, P. (2020). Cosmetic Potential of Lignin Extracts from Alkaline-Treated Sugarcane Bagasse: Optimization of Extraction Conditions using Response Surface Methodology. International Journal of Biological Macromolecules. 153, 138-145.

Tarasov, D., Leitch, M., & Fatehi, P. (2018). Lignin–Carbohydrate Complexes: Properties, Applications, Analyses, and Methods of Extraction: A Review. Biotechnology for Biofuels, 11, 1-28.

Sadeghifar, H., & Ragauskas, A. (2020). Lignin as a UV Light Blocker—A Review. Polymers. 12(5), 1134.

Salatein, N. M., Ibrahim, R. A., & Fahim, I. S. (2024). Sustainable Utilization of Sugarcane Bagasse for Wood-Based Panels: A Promising Approach for Waste Management in Egypt. Journal of Engineering Research. https://doi.org/10.1016/J.JER.2024.05.013

Su, H., Liu, G., He, M., & Tan, F. (2015). A Biorefining Process: Sequential, Combinational Lignocellulose Pretreatment Procedure for Improving Biobutanol Production from Sugarcane Bagasse. Bioresource Technology. 187, 149-160.

Ugartondo, V., Mitjans, M., & Vinardell, M. P. (2008). Comparative Antioxidant and Cytotoxic Effects of Lignins from Different Sources. Bioresource Technology, 99(14), 6683-6687.

Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production. Energy & Fuels. 24(3), 2113-2119.

Yang, M., Rehman, M. S. U., Yan, T., Khan, A. U., Oleskowicz-Popiel, P., Xu, X., ... & Xu, J. (2018). Treatment of Different Parts of Corn Stover for High Yield and Lower Polydispersity Lignin Extraction with High-Boiling Alkaline Solvent. Bioresource Technology. 249, 737-743.

Yaakob, M. N. A., & Roslan, R. (2021). The Extraction of Lignin from Empty Fruit Bunch Fiber via Microwave-Assisted Deep-Eutectic Solvent Heating: Extraction of Lignin from Empty Fruit Bunch Fiber via Microwave-Assisted Deep-Eutectic Solvent Heating. Current Science and Technology. 1(2), 18–25. https://doi.org/10.15282/cst.v1i2.6708

Wan-Mohtar, W. A. A. Q. I., Khalid, N. I., Rahim, M. H. A., Luthfi, A. A. I., Zaini, N. S. M., Din, N. A. S., & Mohd Zaini, N. A. (2023). Underutilized Malaysian Agro-Industrial Wastes as Sustainable Carbon Sources for Lactic Acid Production. Fermentation. 9(10), 905. https://doi.org/10.3390/fermentation9100905

Widsten, P. (2020). Lignin-based Sunscreens—State-of-The-Art, Prospects and Challenges. Cosmetics. 7(4), 85.

Wu, Y., Gao, J., Li, J., & Chen, B. (2023). Construction of Photo-Responsive Lignin as a Broad-Spectrum Sunscreen Agent. International Journal of Biological Macromolecules. 253, 127289. https://doi.org/10.1016/j.ijbiomac.2023.127289

Downloads

Published

2024-06-30

Issue

Section

Articles