Screening of Critical Variables of Andrographis paniculata Extract Loaded onto Chitosan Microparticles

Authors

  • Melissa Yushan Ng School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Rosnani Hasham@Hisam School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Rahimah Sabtu School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Mohd Khairul Hafiz Idris School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Illani Abdul Rahman School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.

DOI:

https://doi.org/10.11113/bioprocessing.v1n1.12

Keywords:

Andrographis paniculata, Chitosan, Microparticles

Abstract

Andrographis paniculata (AP) is a medicinal plant commonly found in Malaysia. However, the main challenges hindering its clinical values is its low bioavailability and solubility in aqueous environment which can be improved by incorporating it into a nanocarrier system. Therefore, this study was conducted to screen the critical variables involved in the development of AP extract-loaded chitosan microparticles. Nine formulations (coded as F1 to F9) at varying chitosan-to-tripolyphosphate (TPP) mass ratio (2:1, 4:1, and 6:1) and reaction time (30, 60, and 90 minutes) were tested utilizing the onefactor-at-a-time (OFAT) technique and characterized by means of their particle size, polydispersity index (PDI), and encapsulation efficiency (EE). The best formulation was further characterized for its zeta potential (ζ-potential), morphology, and stability. F2 was discovered as the best formulation in the first screening with a particle size of 0.595 ± 0.014 μm, PDI of 0.284 ± 0.011, and EE of 81.18 ± 5.53%. Further testing on the formulation revealed a ζ-potential of 6.4 ±1.51 mV with a spherical and smooth-surface microparticles in dispersion. The microparticles were also stable at 4 °C with minimal change in size after 14 days. In conclusion, these results show that entrapment of AP extract into chitosan-TPP microparticles were achievable at good characteristics and stability and could be further studied as a form for delivering therapeutic activities of AP at targeted site.

References

Abosabaa, S., ElMeshad, A. N., & G Arafa, M. (2021). Chitosan nanocarrier entrapping hydrophilic drugs as advanced polymeric system for dual pharmaceutical and cosmeceutical application: A comprehensive analysis using Box–Behnken design. Polymers, 13(5), 677.

Ashraf, M. A., Peng, W., Zare, Y., & Rhee, K. Y. (2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters, 13(1), 1-7.

Canadian Cancer Society (2021). Side effects of chemotherapy. In Canadian Cancer Society. Retrieved June 10, 2021, from

https://www.cancer.ca/en/cancerinformation/diagnosis-andtreatment/chemotherapy-and-other-drugtherapies/chemotherapy/side-effects-ofchemotherapy/?region=on.

Chao, W. W., & Lin, B. F. (2010). Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chinese Medicine, 5(1), 1-15.

Chen, S., Guo, F., Deng, T., Zhu, S., Liu, W., Zhong, H., Yu, H., Luo, R., & Deng, Z., (2016). Eudragit S100-coated chitosan microparticles co-loading Tat for Enhanced Oral Colon Absorption of Insulin. AAPS PharmSciTech, 18(4), 1277-1287.

Gumustas, M., Sengel-Turk, C. T., Gumustas, A., Ozkan, S. A., & Uslu, B. (2017). Effect of polymer-based microparticles on the assay of antimicrobial drug delivery systems. In Multifunctional systems for combined delivery, biosensing and diagnostics (pp. 67-108). Elsevier.

Hassan, M. R. A., Ismail, I., Suan, M. A. M., Ahmad, F., Khazim, W. K. W., Othman, Z., ... & Mustapha, N. R. N. (2016). Incidence and mortality rates of colorectal cancer in Malaysia. Epidemiology and Health, 38.

Hussain, Z. A. H. I. D., & Sahudin, S. H. A. R. I. Z. A. (2016). Preparation, characterisation and colloidal stability of chitosan tripolyphosphate microparticles: optimisation of formulation and process parameters. International Journal of Pharmacy and Pharmaceutical Sciences, 8(3), 297-308.

Jarudilokkul, S., Tongthammachat, A., & Boonamnuayvittaya, V. (2011). Preparation of chitosan microparticles for encapsulation and

release of protein. Korean Journal of Chemical Engineering, 28(5), 1247-1251.

Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197.

Katas, H., Raja, M. A. G., & Lam, K. L. (2013). Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. International Journal of Biomaterials, 2013.

Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Characterization of nanomaterials: Tools and challenges. Nanomaterials for Food Applications, 313-353.

Okhuarobo, A., Falodun, J. E., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014). Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pacific Journal of Tropical

Disease, 4(3), 213-222.

Okigbo, R. N., Eme, U. E., & Ogbogu, S. (2008). Biodiversity and conservation of medicinal and aromatic plants in Africa. Biotechnology and Molecular Biology Reviews, 3(6), 127-134.

Oseni, B. A., Azubuike, C. P., Okubanjo, O. O., Igwilo, C. I., & Panyam, J. (2021). Encapsulation of AND in poly (lactide-co-glycolide) microparticles: Formulation optimization and in vitro efficacy studies. Frontiers in Bioengineering and Biotechnology, 9, 61.

Pantic, M., Horvat, G., Knez, Z., Novak, Z. (2020). Preparation and characterization of chitosan-coated pectin aerogels: Curcumin Case Study. Molecules, 25, 1187; doi:10.3390/molecules25051187.

Pedroso‐Santana, S., & Fleitas‐Salazar, N. (2020). Ionotropic gelation method in the synthesis of microparticles/microparticles for biomedical purposes. Polymer International, 69(5), 443-447.

Philip, A. K., & Philip, B. (2010). Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Medical Journal, 25(2), 79.

Raj, P. M., Raj, R., Kaul, A., Mishra, A. K., & Ram, A. (2018). Biodistribution and targeting potential assessment of mucoadhesive chitosan microparticles designed for ulcerative colitis via scintigraphy. RSC Advances, 8(37), 20809-20821.

Ruiz-Caro, R., & Veiga-Ochoa, M. D. (2009). Characterization and dissolution study of chitosan freeze-dried systems for drug controlled release. Molecules, 14, 4370-4386; doi:10.3390/molecules14114370.

Salleh, L. M., Hartati, H., Jamaludin, R., Yunus, M. A. C., Yakub, H., & Aziz, A. A. (2014). Antioxidant activity and total phenolic contents in methanol extracts from Swietenia mahagoni and Andrographis paniculata. Jurnal Teknologi, 69(4).

Sari, R., Setyawan, D., Retnowati, D., Pratiwi, R. (2019). Development of andrographolide‑chitosan solid dispersion system: Physical characterization, solubility, and dissolution testing. Asian Journal of Pharmaceutics, 13(1): 5

Sari, R., Feriza, M., & Putri, A. N. A. (2016). Polymeric particulate system of carboxymethyl chitosanditerpen lactone fraction of Andrographis paniculatas Nees: Characterization and in vitro release study. International Journal of PharmTech Research, 9(1), 120-127.

Tepsatian, P., & Kittigowittana, K. (2017). Encapsulation efficiency of oolong tea chitosan microparticles for cosmetic applications. Walailak Journal of Scienceand Technology (WJST), 14(9), 677-685.

Tilkan, M. G. Y., & Özdemir, N. (2018). Investigation of the parameters affecting the release of flurbiprofen from chitosan microspheres. Brazilian Journal of Pharmaceutical Sciences, 53.

Vaezifar, S., Razavi, S., Golozar, M. A., Karbasi, S., Morshed, M., & Kamali, M. (2013). Effects of some parameters on particle size distribution of chitosan microparticles prepared by IG method. Journal of Cluster Science, 24(3), 891-903.

Veettil, S. K., Lim, K. G., Chaiyakunapruk, N., Ching, S. M., & Hassan, M. R. A. (2017). Colorectal cancer in Malaysia: Its burden and implications for a multiethnic country. Asian Journal of Surgery, 40(6), 481-489.

Yan, Y., Fang, L. H., & Du, G. H. (2018). AND. In Natural Small Molecule Drugs from Plants (pp. 357-362). Springer, Singapore.

Zahrani, K., Imansari, F., Utami, T. S., & Arbianti, R. (2017, July). Release profile of Andrographis paniculata leaf extract nanocapsule as α-Glucosidase inhibitors. In IOP Conference Series: Materials Science and Engineering (Vol. 214, No. 1, p. 012020). IOP Publishing.

Zhang, J., Li, Y., Gao, W., Repka, M. A., Wang, Y., & Chen, M. (2014). AND-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Expert opinion on drug delivery, 11(9), 1367–1380.

Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D. A., & Barrow, C. J. (2006). A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. Journal of Applied Phycology, 18(3), 445-450.

Zhang, S. Q., Bi, H.M., and Liu, C.J., Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Separation and Purification Technology, 2007. 57(2): p. 277-282.

Downloads

Published

2022-12-22