Recent Understanding on Biodegradation and Abiotic Degradation of Plastics: A Reviewv
DOI:
https://doi.org/10.11113/bioprocessing.v4n1.69Keywords:
Plastic, Biodegradation, Microbial, Waste managementAbstract
The global plastic litter has turned into an environmental problem of grave concern founded on its persistence and adverse impacts on the ecosystem. Addressing this issue requires effective degradation strategies that can complement or replace current waste management practices. This review presents an update of the current advances on biodegradation of plastics with an overview of the various plastics, their properties, and typical applications. This review also describes conventional abiotic degradation mechanisms (thermal, photodegradation, hydrolytic, and mechanical) and their advantages and limitations. The role of microbes as effective biodegradation agents with emphasis on individual strains and specific plastic types is explored. The bioprocess of plastic biodegradation is outlined to indicate how microbial action breaks down synthetic polymers into harmless products in the environment. A comparison of biodegradation with other non-biological degradation processes is also included, their impact on the environment, operational feasibility, and potential for future application. In conclusion, microbial biodegradation has been proved to be a viable, eco-friendly option that can be an integral part of the solution for the global plastics pollution issue.
References
Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid Waste Issue: Sources, Composition, Disposal, Recycling, and Valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. doi: 10.1016/j.ejpe.2018.07.003
Abdullah, N., Sahudin, S., & Kaharudin, N. (2023). Exploring the Role of Chitosan in Fabricating Biodegradable Films for Functional Food Packaging: A Review. Journal of Young Pharmacists, 15(1), 64–73. https://doi.org/10.5530/097515050505
Ahmed, M., Iram, S., Tabassum, N., Sajid, M. A., Paseutsakoun, K., Aleksza, L., … Székács, A. (2025). Biodegradation Efficacy of Aspergillus niger and Trichoderma harzianum on Low-density Polyethylene. Polymers, 17(10), 1303.
Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., … Muhammad, S. (2018). Biodegradation of Plastics: Current Scenario and Future Prospects for Environmental Safety. Environmental Science and Pollution Research, 25(8), 7287–7298. https://doi.org/10.3390/polym17101303
Aiello, M. B. R., Lavorato, G. C., Azcárate, J. C., Henao, J. M. O., Zélis, P. M., Cobos, C. J., … Vericat, C. (2022). Magnetic Nanoparticle–Polymer Composites Loaded with Hydrophobic Sensitizers for Photodegradation of Azoic Dyes. ACS Applied Nano Materials, 5(5), 7460–7470. https://doi.org/10.1021/acsanm.2c01453
Al-Darraji, A., Oluwoye, I., Lagat, C., Tanaka, S., & Barifcani, A. (2024). Erosion of Rigid Plastics in Turbid (Sandy) Water: Quantitative Assessment for Marine Environments and Formation of Microplastics. Environmental Science: Processes & Impacts, 26(10), 1847–1858. https://doi.org/10.1039/d4em00122b
Alimi, O. S., Farner, J. M., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science & Technology, 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559
Andrady, A. L., Heikkilä, A., Pandey, K. K., Bruckman, L. S., White, C. C., Zhu, M., … Zhu, L. (2023). Effects of UV Radiation on Natural and Synthetic Materials. Photochemical & Photobiological Sciences, 22(5), 1177–1202. https://doi.org/10.1007/s43630-023-00377-6
Aruljothi, C., Balaji, P., Vaishnavi, E., Pazhanivel, T., & Vasuki, T. (2023). Magnetic Recyclable CuFe₂O₄/rGO Nanocomposite for the Degradation of Tetracycline Under Sunlight Irradiation. Journal of Chemical Technology & Biotechnology, 98(8), 1908–1917.
Asiandu, A. P., Wahyudi, A., & Sari, S. W. (2021). A Review: Plastics Waste Biodegradation using Plastics-Degrading Bacteria. Journal of Environmental Treatment Techniques, 9(1), 148–157. https://doi.org/10.47277/jett/9(1)157.
Azelee, N. I. W., Adnan, S. A. M., Manas, N. H. A., Dailin, D. J., Ramli, A. N. M., & Illias, R. M. (2019, September). Assessment of Microwave-Assisted Pretreatments for Enhancing Pineapple Waste Delignification. In AIP Conference Proceedings (Vol. 2155, No. 1). AIP Publishing. https://doi.org/10.1063/1.5125507
Baburaj, S., Parthiban, J., Rakhimov, S. A., Johnson, R., Sukhomlinova, L., Luchette, P., … Sivaguru, J. (2023). Modulating Photochemical Properties to Enhance the Stability of Electronically Dimmable Eye Protection Devices. Photochemistry and Photobiology, 99(3), 901–905. https://doi.org/10.1111/php.13795
Beiras, R., & López‐Ibáñez, S. (2023). A Practical Tool for the Assessment of Polymer Biodegradability in Marine Environments Guides the Development of Truly Biodegradable Plastics. Polymers, 15(4), 974. https://doi.org/10.3390/polym15040974
Bertocchini, F., & Arias, C. F. (2023). Why Have We Not Yet Solved the Challenge of Plastic Degradation by Biological Means? PLOS Biology, 21(3), e3001979. https://doi.org/10.1371/journal.pbio.3001979
Bhattacharjee, L., Jazaei, F., & Salehi, M. (2023). Insights into the Mechanism of Plastics’ Fragmentation under Abrasive Mechanical Forces: An Implication for Agricultural Soil Health. CLEAN – Soil, Air, Water, 51(8). https://doi.org/10.1002/clen.202200395
Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of Fungi Isolated from Plastic Debris Floating in the Shoreline of a Lake to Degrade Plastics. PLOS One, 13(8), e0202047. https://doi.org/10.1371/journal.pone.0202047
Buerge, I. J., Kasteel, R., Bächli, A., & Poiger, T. (2019). Behavior of the Chiral Herbicide Imazamox in Soils: Enantiomer Composition Differentiates between Biodegradation and Photodegradation. Environmental Science & Technology, 53(10), 5733–5740. https://doi.org/10.1021/acs.est.8b07210
Cai, Z., Li, M., Zhu, Z., Wang, X., Huang, Y., Li, T. J., … Yan, M. (2023). Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms, 11(7), 1661. https://doi.org/10.3390/microorganisms11071661
CF, S. F., Rebello, S., Aneesh, E. M., Sindhu, R., Binod, P., Singh, S., … Pandey, A. (2021). Bioprospecting of Gut Microflora for Plastic Biodegradation. Bioengineered, 12(1), 1040–1053. https://doi.org/10.1080/21655979.2021.1902173
Chen, Z., Zhang, Y., Xing, R., Rensing, C., Lü, J., Chen, M., … Zhou, S. (2023). Reactive Oxygen Species Triggered Oxidative Degradation of Polystyrene in the Gut of Superworms (Zophobas atratus larvae). Environmental Science & Technology, 57(20), 7867–7874. https://doi.org/10.1021/acs.est.3c00591
Chiu, Y., Chang, T. M., Chen, C., Sone, M., & Hsu, Y. (2019). Mechanistic Insights into Photodegradation of Organic Dyes using Heterostructure Photocatalysts. Catalysts, 9(5), 430. https://doi.org/10.3390/catal9050430
Cifuentes, I. E. M., Werner, J., Jehmlich, N., Will, S., Neumann‐Schaal, M., & Öztürk, B. (2020). Synergistic Biodegradation of Aromatic–Aliphatic Copolyester Plastic by a Marine Microbial Consortium. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19583-2
Cognigni, F., Temporiti, M. E. E., Nicola, L., Guéninchault, N., Tosi, S., & Rossi, M. (2023). Exploring the Infiltrative and Degradative Ability of Fusarium oxysporum on Polyethylene Terephthalate (PET) using Correlative Microscopy and Deep Learning. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-50199-w
Dailin, D. J., Azzahra, S. Z., Rithwan, F., Hanapi, S. Z., Rashidi, A. R., Ramli, S., … El Enshasy, H. (2024). Screening of Different Fungi Strains Gongronella sp. WICC F60 and Cordyceps sp. WICC F61 for Degradation of Low-Density Polyethylene. Journal of Bioprocessing and Biomass Technology, 3(1), 21–25. https://doi.org/10.11113/bioprocessing.v3n1.46
Dailin, D. J., Elsayed, E. A., Malek, R. A., Hanapi, S. Z., Selvamani, S., Ramli, S., … El Enshasy, H. A. (2020). Efficient Kefiran Production by Lactobacillus kefiranofaciens ATCC 43761 in Submerged Cultivation: Influence of Osmotic Stress and Nonionic Surfactants, and Potential Bioactivities. Arabian Journal of Chemistry, 13(12), 8513–8523. https://doi.org/10.1016/j.arabjc.2020.09.030
Dailin, D. J., Rithwan, F., Hisham, A. M., Rasid, Z. I. A., Azelee, N. I. W., Sapawe, N., … Enshasy, H. E. (2022). A Review on Current Status of Plastic Waste Biodegradation using Microbial Approach. Bioscience Research, 19(3), 1599–1606.
Danso, D., Chow, J., & Streit, W. R. (2019). Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Applied and Environmental Microbiology, 85(19). https://doi.org/10.1128/aem.01095-19
Das, K. K., Barman, R., Bhattacharyya, S., & Chakraborty, R. (2018). A Comparative Study on the Effect of Polyethylene Plastic Waste on Sandy Soils. International Journal of Environment and Sustainable Development, 17(1), 56. https://doi.org/10.1504/ijesd.2018.10010110
Desidery, L., & Lanotte, M. (2022). Polymers and Plastics: Types, Properties, and Manufacturing. In Plastic waste for sustainable asphalt roads (pp. 3–28). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85789-5.00001-0
Deymeh, F., Ahmadpour, A., Allahresani, A., & Arami–Niya, A. (2023). Enhanced Photocatalytic Degradation of Tetracycline-Class Pollutants in Water using a Dendritic Mesoporous Silica Nanocomposite Modified with UIO-66. Industrial & Engineering Chemistry Research, 62(39), 15940–15952. https://doi.org/10.1021/acs.iecr.3c02193
Dissanayake, P. D., Withana, P. A., Sang, M. K., Cho, Y., Park, J., Oh, D. X., … Ok, Y. S. (2024). Effects of Biodegradable Poly(Butylene Adipate‐Co‐Terephthalate) and Poly(Lactic Acid) Plastic Degradation on Soil Ecosystems. Soil Use and Management, 40(2). https://doi.org/10.1111/sum.13055
Doblies, A., Boll, B., & Fiedler, B. (2019). Prediction of Thermal Exposure and Mechanical Behavior of Epoxy Resin using Artificial Neural Networks and Fourier Transform Infrared Spectroscopy. Polymers, 11(2), 363. https://doi.org/10.3390/polym11020363
DSouza, G. C., Sheriff, R. S., Ullanat, V., Shrikrishna, A., Joshi, A. V., Hiremath, L., … Entoori, K. (2021). Fungal Biodegradation of Low-Density Polyethylene using Consortium of Aspergillus species under Controlled Conditions. Heliyon, 7(5), e07008. https://doi.org/10.1016/j.heliyon.2021.e07008
Ebnesajjad, S. (2017). History and Future of Plastics. In Plastics in Medical Devices (pp. 15–30). William Andrew Publishing. https://doi.org/10.1007/978-3-319-78766-4_4.
El‐Hiti, G. A., Ahmed, D. S., Yousif, E., Al-Khazrajy, O. S. A., Abdallh, M., & Alanazi, S. A. (2021). Modifications of Polymers Through the Addition of Ultraviolet Absorbers to Reduce the Aging Effect of Accelerated and Natural Irradiation. Polymers, 14(1), 20. https://doi.org/10.3390/polym14010020
Fu, J., Alee, M., Yang, M., Liu, H., Li, Y., Li, Z., … Yu, L. (2022). Synergizing Multi-Plasticizers for a Starch-Based Edible Film. Foods, 11(20), 3254. https://doi.org/10.3390/foods11203254
Gabriel, D. S., & Tiana, A. N. (2020). Mechanical Properties Improvement of Recycled Polypropylene with Material Value Conservation Schemes using Virgin Plastic Blends. Materials Science Forum, 1015, 76–81. https://doi.org/10.4028/www.scientific.net/msf.1015.76
Gajendiran, A., Krishnamoorthy, S., & Abraham, J. (2016). Microbial Degradation of Low-Density Polyethylene (LDPE) by Aspergillus clavatus strain JASK1 Isolated from Landfill Soil. 3 Biotech, 6(1). https://doi.org/10.1007/s13205-016-0394-x
Gan, Z., & Zhang, H. (2019). PMBD: A Comprehensive Plastics Microbial Biodegradation Database. Database, 2019. https://doi.org/10.1093/database/baz119
Garg, A. K., Dalal, C., Gunture, G., & Sonkar, S. K. (2022). Cadmium-sulfide Doped Carbon Nanoflakes used For Sunlight-Assisted Selective Photodegradation Of Indigo Carmine. ACS ES&T Water, 3(6), 1574–1583. https://doi.org/10.1021/acsestwater.2c00277
Gewert, B., Plassmann, M., Sandblom, O., & MacLeod, M. (2018). Identification of Chain Scission Products Released to Water by Plastic Exposed to Ultraviolet Light. Environmental Science & Technology Letters, 5(5), 272–276. https://doi.org/10.1021/acs.estlett.8b00119
Geyer, R. (2020). Production, Use, and Fate of Synthetic Polymers. In Plastic Waste and Recycling (pp. 13–32). Academic Press. https://doi.org/10.1016/B978-0-12-817880-5.00002-5
Govind, A., & Nishitha, K. (2023). Plastic and Its Side Effects on Humans–A Review Article. Asian Pacific Journal of Environment and Cancer, 6(1), 81-85. https://doi.org/10.31557/apjec.2023.6.1.81-85
Guo, B., Lopez‐Lorenzo, X., Fang, Y., Bäckström, E., Capezza, A. J., Vanga, S. R., … Syrén, P. (2023). Fast Depolymerization of PET Bottle Mediated by Microwave Pre‐Treatment and an Engineered PETase. ChemSusChem, 16(18). https://doi.org/10.1002/cssc.202300742
Haider, T., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2018). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie International Edition, 58(1), 50–62. https://doi.org/10.1002/anie.201805766
Han, Y., Wei, M., Shi, X., Wang, D., Zhang, X., Zhao, Y., … Li, F. (2020). Effects of Tensile Stress and Soil Burial on Mechanical and Chemical Degradation Potential of Agricultural Plastic Films. Sustainability, 12(19), 7985. https://doi.org/10.3390/su12197985
Hari, S. (2018). Review on Effect of Fungi on Plastic Degradation. Retrieved October 9, 2024, from https://ijrar.com/upload_issue/ijrar_issue_20542768.pdf
He, L., & Liu, D. (2024). Emerging Challenges and Future Directions in Insect-Mediated Plastic Degradation. Environmental Science & Technology Letters, 11(5), 394–396. https://doi.org/10.1021/acs.estlett.4c00312
Hu, X., Kang, X., & Jian, Z. (2022). Suppression of Chain Transfer at High Temperature in Catalytic Olefin Polymerization. Angewandte Chemie International Edition, 61(33). https://doi.org/10.1002/anie.202207363
Iñiguez, M. E., Conesa, J. A., & Fullana, A. (2018). Recyclability of Four Types of Plastics Exposed to UV Irradiation tn a Marine Environment. Waste Management, 79, 339–345. https://doi.org/10.1016/j.wasman.2018.08.006
Islam, M., Al-Hashimi, A., Ayshasiddeka, M., Ali, H., El Enshasy, H. A., Dailin, D. J., … Yeasmin, T. (2022). Prevalence of Mycorrhizae in Host Plants and Rhizosphere Soil: A Biodiversity Aspect. PLOS One, 17(3), e0266403. https://doi.org/10.1371/journal.pone.0266403
Julienne, F., Delorme, N., & Lagarde, F. (2019). From Macroplastics to Microplastics: Role of Water in the Fragmentation of Polyethylene. Chemosphere, 236, 124409. https://doi.org/10.1016/j.chemosphere.2019.124409
Kakadellis, S., & Rosetto, G. (2021). Achieving a Circular Bioeconomy for Plastics. Science, 373(6550), 49–50. https://doi.org/10.1126/science.abj3476
Kawai, F., Kawabata, T., & Oda, M. (2019). Current Knowledge on Enzymatic PET Degradation and its Possible Application to Waste Stream Management and Other Fields. Applied Microbiology and Biotechnology, 103(11), 4253–4268. https://doi.org/10.1007/s00253-019-09717-y
Kuswytasari, N. D., Kurniawati, A. R., Alami, N. H., Zulaika, E., Shovitri, M., Oh, K. M., & Puspaningsih, N. N. T. (2019). Plastic Degradation by Coriolopsis byrsina, an Identified White-Rot, Soil-Borne Mangrove Fungal Isolate from Surabaya, East Java, Indonesia. Biodiversitas, 20(3), 867-871.
Khare, R., & Khare, S. (2023). Polymer and Its Effect on Environment. Journal of the Indian Chemical Society, 100(1), 100821.
Kilanko, O., & Olamigoke, O. (2024). Process Parameter Optimization for Waste Polyethylene Terephthalate Bottle Depolymerization Using Neutral Hydrolysis.
Li, A., Wu, L., Cui, H., Song, Y., Zhang, X., & Li, X. (2024). Unlocking a Sustainable Future for Plastics: A Chemical‐Enzymatic Pathway for Efficient Conversion of Mixed Waste to MHET and Energy‐Saving PET Recycling. ChemSusChem, 17(13). https://doi.org/10.1002/cssc.202301612
Lors, C., Leleux, P., & Park, C. H. (2025). State of the Art on Biodegradability of Bio-based Plastics containing Polylactic Acid. Frontiers in Materials, 11, 1476484.
Lou, Y., Ekaterina, P., Yang, S., Lu, B., Liu, B., Ren, N., … Xing, D. (2020). Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-Diet Supplementation on the Core Gut Microbiome. Environmental Science & Technology, 54(5), 2821–2831.
Luz, J. M. R. d., Silva, M. d. C. S. d., Santos, L. F. d., & Kasuya, M. C. M. (2020). Plastics Polymers Degradation by Fungi. Microorganisms.
Mandan, H., & Arya, A. (2017). Fungi—Agents of Plastic Biodegradation: Report for ITR Course. International Journal of Biotechnology and Biomedical Sciences, 3(1), 61–64.
Maraveas, C. (2020). Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers, 12(5), 1127.
Merino, D., & Athanassiou, A. (2022). Biodegradable and Active Mulch Films: Hydrolyzed Lemon Peel Waste and Low Methoxyl Pectin Blends with Incorporated Biochar and Neem Essential Oil. ACS Sustainable Chemistry & Engineering, 10(33), 10789–10802.
Mogni, G. (2021). Mechanical Properties of Polymers. Materials Square. Retrieved December 24, 2024, from https://www.materialssquare.com/blog/mechanical-properties-of-polymers-en
Montazer, Z., Najafi, M. B. H., & Levin, D. B. (2019). Microbial Degradation of Low-Density Polyethylene and Synthesis of Polyhydroxyalkanoate Polymers. Canadian Journal of Microbiology, 65(3), 224–234. https://doi.org/10.1139/cjm-2018-0335
Mundhenke, T. F., Li, S. C., & Maurer‐Jones, M. A. (2022). Photodegradation of Polyolefin Thin Films in Simulated Freshwater Conditions. Environmental Science: Processes & Impacts, 24(12), 2284–2293. https://doi.org/10.1039/d2em00359g
Munir, E., Suryanto, D., Pasaribu, Y., Mubtasima, S., Hartanto, A., Lutfia, A., … Nasution, A. F. (2022). Occurrence of Microbial Community on Plastic Wastes in Terjun landfill, North Sumatra. IOP Conference Series: Earth and Environmental Science, 1115(1), 012080.
Myren, T. H. T., Stinson, T. A., Mast, Z. J., Huntzinger, C. G., & Luca, O. R. (2020). Chemical and Electrochemical Recycling of End-Use Poly(Ethylene Terephthalate) (PET) Plastics in Batch, Microwave and Electrochemical Reactors. Molecules, 25(12), 2742.
Najmi, N., Ratna, R., Putra, B. S., Lubis, A., & Devianti, D. (2025). Utilization of Jackfruit Seed Waste to Make Biodegradable Plastic Packaging With The Addition Of Beeswax. IOP Conference Series: Earth and Environmental Science, 1477(1), 012065.
Narančić, T., Cerrone, F., Beagan, N., & O’Connor, K. E. (2020). Recent Advances in Bioplastics: Application and Biodegradation. Polymers, 12(4), 920.
Nisha, M., Montazer, Z., Sharma, P., & Levin, D. B. (2020). Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in Microbiology, 11, 580709.
Oliveira, J., Belchior, A., da Silva, V. D. d., Rotter, A., Petrovski, Ž., Almeida, P. L., … Gaudêncio, S. P. (2020). Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization. Frontiers in Marine Science, 7, 567126.
Paço, A., Duarte, K., da Costa, J., Santos, P., Pereira, R., & Pereira, M., et al. (2016). Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion maritimum. Science of the Total Environment, 586, 10–15.
Peng, C., Wang, J., Liu, X., & Wang, L. (2022). Differences in the Plastispheres of Biodegradable and non-Biodegradable Plastics: A Mini Review. Frontiers in Microbiology, 13, 849147.
Phanthong, P., & Yao, S. (2023). Revolutionary Plastic Mechanical Recycling Process: Regeneration of Mechanical Properties and Lamellar Structures. In Recycling strategy and challenges associated with waste management towards sustaining the world.
Phanthong, P., Miyoshi, Y., & Yao, S. (2021). Development of Tensile Properties and Crystalline Conformation of Recycled Polypropylene by Re-Extrusion Using a Twin-Screw Extruder with an Additional Molten Resin Reservoir Unit. Applied Sciences, 11(4), 1707.
Philippe, A., Salaün, M., Quémener, M., Noël, C., Tallec, K., Lacroix, C., … Burgaud, G. (2024). Colonization and Biodegradation Potential of Fungal Communities on Immersed Polystyrene vs. Biodegradable Plastics: A Time Series Study in a Marina Environment. Journal of Fungi, 10(6), 428.
Reusch, W. (2013). Polymers. Retrieved November 22, 2024, from https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/polymers.htm
Roberts, C. G., Edwards, S., Vague, M., León‐Zayas, R., Scheffer, H., Chan, G., … Mellies, J. L. (2020). Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. mSphere, 5(6), e01151-20.
Rostampour, S., Cook, R., Jhang, S., Li, Y., Fan, C., & Sung, L. (2024). Changes in the Chemical Composition of Polyethylene Terephthalate under UV Radiation in Various Environmental Conditions. Research Square Preprint. https://doi.org/10.21203/rs.3.rs-4402725/v1
Ray, S., & Cooney, R. P. (2018). Thermal Degradation of Polymer and Polymer Composites. In Handbook of Environmental Degradation of Materials (pp. 185-206). William Andrew publishing.
Royer, S., Greco, F., Kogler, M., & Deheyn, D. D. (2023). Not so Biodegradable: Polylactic Acid and Cellulose/Plastic Blend Textiles Lack Fast Biodegradation in Marine Waters. PLoS ONE, 18(5), e0284681.
Salvador, M., Abdulmutalib, U., González, J., Kim, J., Smith, A. A., Faulon, J., … Jiménez, J. I. (2019). Microbial Genes for a Circular and Sustainable Bio-PET Economy. Genes, 10(5), 373.
Samuel, H. S., Ekpan, F. M., & Ori, M. O. (2024). Biodegradable, Recyclable, and Renewable Polymers as Alternatives to Traditional Petroleum-Based Plastics. Asian Journal of Environmental Research, 1(3), 152–165.
Sangale, M., Shahnawaz, M., & Ade, A. (2019). Potential of Fungi Isolated from the Dumping Sites Mangrove Rhizosphere Soil to Degrade Polythene. Scientific Reports, 9(1), 1–12.
Sargen, M. (2021). How Microbes Grow. Science in the News. Retrieved on November 7, 2024.
Sayyed, R. Z., Bhamare, H. M., Sapna, Marraiki, N., Elgorban, A. M., Syed, A., … Dailin, D. J. (2020). Tree Bark Scrape Fungus: A Potential Source of Laccase for Application in Bioremediation of Non-Textile Dyes. PLoS ONE, 15(6), e0229968.
Schiferle, E. B., Ge, W., & Reinhard, B. M. (2023). Nanoplastics Weathering and Polycyclic Aromatic Hydrocarbon Mobilization. ACS Nano, 17(6), 5773–5784.
Schyns, Z. O. G., & Shaver, M. P. (2020). Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications, 42(3), 2000415.
Shakirova, G. D., Romanova, N. V., & Shafigullin, L. N. (2020). Failure Analysis of the Propylene Parts Used in Trucks. Materials Science Forum, 989, 22–27.
Sharma, H., & Neelam, D. K. (2022). Understanding Challenges Associated with Plastic and Bacterial Approach Toward Plastic Degradation. Journal of Basic Microbiology, 63(3–4), 292–307. https://doi.org/10.1002/jobm.202200428
Shovitri, M., Hefdiyah, H., Antika, T. R., Kuswytasari, N. D., Alami, N. H., Zulaika, E., … Oh, M. (2023). Plastic-Degrading Bacteria Isolated from Contaminated Mangrove Sediment in Wonorejo, Surabaya. Applied Environmental Biotechnology, 8(2), 18–28.
Siregar, R., Yusuf, M., Dari, N., Siregar, R., Rahmah, M., Nasution, M., … Widodo, P. (2022). Biodegradation Study of LDPE/PCL Polyblend Plastic Film by Using The Fungus Aspergillus niger. AIP Conference Proceedings, 2659, 080007.
Song, M. H., Zhu, J. F., Li, Y. K., Zhou, H. K., Xu, X. L., Cao, G. M., ... & Ouyang, H. (2020). Shifts in Functional Compositions Predict Desired Multifunctionality Along Fragmentation Intensities in an Alpine Grassland. Ecological Indicators, 112, 106095.
Soud, S. A. (2019). Biodegradation of Polyethylene LDPE Plastic Waste Using Locally Isolated Streptomyces sp. Retrieved on February 22, 2025.
Sousa, R. R. de, Santos, C. A. M. de, Ito, N. M., Suqueira, A. N., Lackner, M., & Santos, D. J. de. (2022). PHB Processability and Property Improvement with Linear-Chain Polyester Oligomers Used as Plasticizers. Polymers, 14(19), 4197.
Stanica-Ezeanu, D., & Matei, D. (2021). Natural Depolymerization of Waste Poly(Ethylene Terephthalate) by Neutral Hydrolysis in Marine Water. Scientific Reports, 11(1), Article 83659.
Sukmawati, D., Andrianto, M. H., Arman, Z., Ratnaningtyas, N. I., Al Husna, S. N., El-Enshasy, H. A., … Kenawy, A. A. (2020). Antagonistic Activity Of Phylloplane Yeasts from Moringa Oleifera Lam. Leaves against Aspergillus flavus UNJCC F-30 from Chicken Feed. Indian Phytopathology, 73, 79–88.
Sunil, S., Chowdhury, T., & Soni, R. (2023). Biodegradation of Pretreated Polyethylene Film by Pseudomonas aeruginosa AMB‐CD‐1. Remediation Journal, 33(2), 177–184. https://doi.org/10.1002/rem.21748
Szczepanik, B., Słomkiewicz, P. M., Wideł, D., Czaplicka, M., & Frydel, L. (2021). Kinetics and Mechanism of Aniline and Chloroanilines Degradation Photocatalyzed by Halloysite-TiO₂ and Halloysite-Fe₂O₃ Nanocomposites. Catalysts, 11(12), 1548.
Tahmasebi, N., Sezari, S., Abbasi, H., & Barzegar, S. (2019). Investigation of Photodegradation of Rhodamine B over a BiOX (X = Cl, Br and I) Photocatalyst under white LED Irradiation. Bulletin of Materials Science, 42(4), Article 1841.
Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 10(6), 1180.
Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of Plastics and Plastic-degrading Bacteria in Cold Marine Habitats. Applied Microbiology and Biotechnology, 102(17), 7669–7678.
Usman, N., Hassan, L., Almustapha, M. N., Achor, M., & Agwamba, E. C. (2023). Preparation and Characterization of Thermoplastic Cassava and Sweet Potato Starches. Nigerian Journal of Basic and Applied Sciences, 30(2), 118–125.
Verma, M., Singh, P., Pradhan, V., & Dhanorkar, M. (2025). Spatial and Seasonal Variations in Abundance, Distribution Characteristics, and Sources of Microplastics in Surface Water of Mula River in Pune, India. Environmental Pollution, 373, 126091.
Waldman, W. R., & Rillig, M. C. (2020). Microplastic Research Should Embrace the Complexity of Secondary Particles. Environmental Science & Technology, 54(13), 7751–7753.
Walsh, A. N., Mazzotta, M. G., Nelson, T. F., Reddy, C. M., & Ward, C. P. (2022). Synergy between Sunlight, Titanium Dioxide, And Microbes Enhances Cellulose Diacetate Degradation In The Ocean. Environmental Science & Technology, 56(19), 13810–13819.
Walsh, A. N., Reddy, C. M., Niles, S. F., McKenna, A. M., Hansel, C. M., & Ward, C. P. (2021). Plastic Formulation is an Emerging Control of its Photochemical Fate in the Ocean. Environmental Science & Technology, 55(18), 12383–12392.
Wang, T., Li, Y., Pan, J., Zhang, Y., Wu, L., Dong, C., … Li, C. (2019). Alcohol Solvothermal Reduction for Commercial P25 to Harvest Weak Visible Light and Fabrication of the Resulting Floating Photocatalytic Spheres. Scientific Reports, 9(1).
Wang, W., Wang, S., Xu, J., Yang, H., Liu, Y., Li, M., … Zhi, Y. (2024). Microblog‐Assisted Synthesis of Schiff Base Network Polymers for SO₂/epoxide Copolymerization and Thermal Degradation Kinetics of the Products. ChemistrySelect, 9(41).
Wang, Y., Hou, B., Huang, L., Li, B., Liu, S., He, M., … Li, J. (2023). Study on Properties And Degradation Behavior Of Poly (Adipic Acid/Butylene Terephthalate-Co-Glycolic Acid) Copolyester Synthesized By Quaternary Copolymerization. International Journal of Molecular Sciences, 24(7), 6451.
Weinstein, J. E., Dekle, J. L., Leads, R. R., & Hunter, R. A. (2020). Degradation of Bio-Based and Biodegradable Plastics in a Salt Marsh Habitat: Another Potential Source of Microplastics in Coastal Waters. Marine Pollution Bulletin, 160, 111518. https://doi.org/10.1016/j.marpolbul.2020.111518
World Bank Group. (2021). Market Study for Malaysia: Plastic Circularity Opportunities and Barriers. Marine Plastics Series, East Asia and Pacific Region. Washington, DC. Retrieved April 2, 2025, from https://documents1.worldbank.org/curated/en/272471616512761862/pdf/Market-Study-for-Malaysia-Plastics-Circularity-Opportunities-and-Barriers.pdf
Xuan, W., Hakkarainen, M., & Odelius, K. (2019). Levulinic Acid as a Versatile Building Block for Plasticizer Design. ACS Sustainable Chemistry & Engineering.
Yang, X., Li, Y., Lei, W., Bai, Z., Zhan, Y., Li, Y., … Liu, Q. (2023a). Understanding the Thermal Degradation Mechanism of High-Temperature-Resistant Phthalonitrile foam at Macroscopic and Molecular Levels. Polymers, 15(19), 3947. https://doi.org/10.3390/polym15193947
Yang, Y., Suyamud, B., Liang, S., Liang, X., Wan, W., & Zhang, W. (2023b). Distinct Spatiotemporal Succession of Bacterial Generalists and Specialists in the Lacustrine Plastisphere. Environmental Microbiology, 25(12), 2746–2760.
Yanto, D., Krishanti, N., Ardiati, F., Anita, S., Nugraha, I., & Sari, F. et al. (2019). Biodegradation of Styrofoam Waste by Ligninolytic Fungi and Bacteria. IOP Conference Series: Earth and Environmental Science, 308(1), 012001.
Yousaf, A., Al Rashid, A., Polat, R., & Koç, M. (2024). Potential and Challenges of Recycled Polymer Plastics and Natural Waste Materials for Additive Manufacturing. Sustainable Materials and Technologies, e01103.
Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., … Zhu, H. (2023). Sustainable Bioplastics Derived from Renewable Natural Resources for Food Packaging. Matter, 6(1), 97–127.
Zimmermann, W. (2020). Biocatalytic Recycling of Polyethylene Terephthalate Plastic. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2176), 20190273.