Optimization and Characterization of Fish Protein Hydrolysate (FPH) from Milkfish Scales (Chanos chanos Forsskal) Using Papain Enzyme
DOI:
https://doi.org/10.11113/bioprocessing.v2n2.36Keywords:
Milkfish scales, Hydrolysed fish protein, Papain, MilkfishAbstract
This study determined that optimum fish protein hydrolysed (FPH production results from milkfish scales using crude extract of papain can be achieved by mixing 0.305 units of papain crude extract with 1 g of milkfish scales previously treated with 0.1 M NaOH (1:10 w/v). The incubation process comprised three stages: incubation at room temperature for 3 h, incubation at 75 °C for 1 h, and continued incubation at 90 °C for 5 min, with a resulting FPH yield of 45.70%. FTIR characterization revealed that FPH derived from milkfish scales includes amide A, amide I, amide II, and amide III groups. Additionally, SDS-PAGE analysis indicated that the FPH molecules measure between 10-35 kDa. The results of the study showed that FPH can inhibit the activity of E. coli and S. aureus, forming clear zones measuring 2.438 mm and 1.563 mm, respectively. Furthermore, FPH exhibited antioxidant activity against DPPH with an IC50 value of 81.91 ppm.
References
Aditia, R. P., Desniar, D., & Trilaksani, W. (2018). Aktivitas Antioksidan dan Antibakteri Hidrolisat Protein Hasil Fermentasi Telur Ikan Cakalang. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 1. https://doi.org/10.17844/jpFPH.v21i1.21256
Ahmad, T., Ismail, A., Ahmad, S. A., Abdul Khalil, K., Awad, E. A., Akhtar, M. T., & Sazili, A. Q. (2021). Recovery of Gelatin from Bovine Skin with the Aid of Pepsin and Its Effects on the Characteristics of the Extracted Gelatin. Polymers, 13(10), 1554. https://doi.org/10.3390/polym13101554
Ahmad, T., Ismail, A., Ahmad, S. A., Khalil, K. A., Teik Kee, L., Awad, E. A., & Sazili, A. Q. (2019). Physicochemical Characteristics and Molecular Structures of Gelatin Extracted from Bovine Skin: Effects of Actinidin and Papain Enzymes Pretreatment. International Journal of Food Properties, 22(1), 138–153. https://doi.org/10.1080/10942912.2019.1576731
Amini, N., Setiasih, S., Handayani, S., Hudiyono, S., & Saepudin, E. (2018). Potential Antibacterial Activity of Partial Purified Bromelain from Pineapple Core Extracts Using Acetone and Ammonium Sulphate Against Dental Caries-Causing Bacteria. 020071. https://doi.org/10.1063/1.5064068
Baehaki, A., Lestari, S. D., & Romadhoni, A. R. (2015). Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(3). https://doi.org/10.17844/jpFPH.v18i3.11208
Bahari, A. N., Saari, N., Salim, N., & Ashari, S. E. (2020). Response factorial design analysis on papain-generated hydrolysates from Actinopyga lecanora for determination of antioxidant and antityrosinase activities. Molecules, 25(11), 2663. https://doi.org/10.3390/molecules25112663
Bernadeta, Ardiningsih, P., & Silalahi, I. H. (2012). Penentuan Kondisi Optimum Hidrolisat Protein dari Limbah Ikan Ekor Kuning. Jurnal Kimia Khatulistiwa, 1(1), 26–30.
Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chemistry, 135(4), 3020–3038. https://doi.org/10.1016/j.foodchem.2012.06.100
Chalamaiah, M., Yu, W., & Wu, J. (2018). Immunomodulatory and Anticancer Protein Hydrolysates (Peptides) from Food Proteins: A Review. Food Chemistry, 245, 205–222. https://doi.org/10.1016/j.foodchem.2017.10.087
Das, A., Nayak, Y., & Dash, S. (2021). Fish Protein Hydrolysate Production, Treatment Methods and Current Potential Uses: A Review. International Journal of Fisheries and Aquatic Studies, 9(2), 195–200. https://doi.org/10.22271/fish.2021.v9.i2c.2452
Deviarni, I. M., Nur’aenah, N., & Fitriyani, E. (2021). Chemical Properties of Fish Protein Hydrolyzate from Snakehead fish. Jurnal Galung Tropika, 10(1), 91–97. http://dx.doi.org/10.31850/jgt.v10i1.717
Dinakarkumar, Y., Krishnamoorthy, S., Margavelu, G., Ramakrishnan, G., & Chandran, M. (2022). Production and Characterization of Fish Protein Hydrolysate: Effective Utilization of Trawl By-Catch. Food Chemistry Advances, 1, 100138. https://doi.org/10.1016/j.focha.2022.100138
Fu, Y., & Zhao, X.-H. (2015). Utilization of Chum Salmon ( Oncorhynchus keta ) Skin Gelatin Hydrolysates to Attenuate Hydrogen Peroxide-Induced Oxidative Injury in Rat Hepatocyte BRL Cell Model. Journal of Aquatic Food Product Technology, 24(7), 648–660. https://doi.org/10.1080/10498850.2013.804141
Grand View Research (2019). Fish Protein Hydrolysate Market Size, Share & Trends Analysis Report By Technology (Autolytic, Acid Hydrolysis), By Form (Powder, Liquid), By Source (Sardines, Anchovies), By Application, By Region, And Segment Forecasts, 2020 – 2027.
Habtu, E., Mekonnen, B., Kiros, H., Fesseha, H., & Getachew, B. (2020). Meat Tenderization of Efficiency of Papain, Bromelain and Zingiber officinale on Old Aged Beef Carcass of local Zebu cattle. Trends in Technical & Scientific Research, 04(1), 9–15. https://doi.org/10.19080/TTSR.2020.04.555628
Hestyani Arum, R., Satiawihardja, B., Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor, Indonesia, D. Kusumaningrum, H., & Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor, Indonesia. (2014). Aktivitas Antibakteri Getah Pepaya Kering Terhadap Staphylococcus aureus Pada Dangke. Jurnal Teknologi dan Industri Pangan, 25(1), 65–71. https://doi.org/10.6066/jtip.2014.25.1.65
Idowu, A. T., Igiehon, O. O., Idowu, S., Olatunde, O. O., & Benjakul, S. (2021). Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. International Journal of Peptide Research and Therapeutics, 27(1), 109–118. https://doi.org/10.1007/s10989-020-10071-1
Jenkelunas, P. J., & Li-Chan, E. C. Y. (2018). Production and Assessment of Pacific hake (Merluccius productus) Hydrolysates As Cryoprotectants for Frozen Fish Mince. Food Chemistry, 239, 535–543. https://doi.org/10.1016/j.foodchem.2017.06.148
Khattak, F., Pasha, T. N., Hayat, Z., & Mahmud, A. (2006). Enzymes In Poultry Nutrition. Journal of Animal and Plant Sciences, 16(1–2). https://www.researchgate.net/publication/267838707_Enzymes_in_poultry_nutrition
Korkmaz, K., & Tokur, B. (2021). Optimization of Hydrolysis Conditions for the Production of Protein Hydrolysates from Fish Wastes Using Response Surface Methodology. Food Bioscience, 45. https://doi.org/10.1016/j.fbio.2021.101312
Kristoffersen, K. A., Liland, K. H., Böcker, U., Wubshet, S. G., Lindberg, D., Horn, S. J., & Afseth, N. K. (2019). FTIR-Based Hierarchical Modeling for Prediction of Average Molecular Weights of Protein Hydrolysates. Talanta, 205, 120084. https://doi.org/10.1016/j.talanta.2019.06.084
Li, Z., Teng, J., Lyu, Y., Hu, X., Zhao, Y., & Wang, M. (2018). Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules, 24(1), 51. https://doi.org/10.3390/molecules24010051
Liu, D., Wei, G., Li, T., Hu, J., Lu, N., Regenstein, J. M., & Zhou, P. (2015). Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chemistry, 172, 836–843. https://doi.org/10.1016/j.foodchem.2014.09.147
Macalood, J. S., Vicente, H. J., Boniao, R. D., Gorospe, J. G., & Roa, E. C. (2013). Chemical Analysis of Carica papaya L. Crude Latex. American Journal of Plant Sciences, 04(10), 1941–1948. https://doi.org/10.4236/ajps.2013.410240
Maryam, St., Effendi, N., & Kasmah, K. (2019). Production and Characterization of Gelatin from Chicken Bone Waste Using Spectrofotometer FTIR (Fourier Transform Infra Red). Majalah Farmaseutik, 15(2), 96. https://doi.org/10.22146/farmaseutik.v15i2.47542
Mustika, L. A. (2022). Pengaruh Waktu Maserasi Daun Sirih Merah menggunakan Etanol 90% Terhadap Karakteristik Kimiawi dan Aktivitas Antioksidannya [Skripsi tidak diterbitkan]. Universitas Negeri Malang.
Ngo, D.-H., Ryu, B., Vo, T.-S., Himaya, S. W. A., Wijesekara, I., & Kim, S.-K. (2011). Free Radical Scavenging and Angiotensin-I Converting Enzyme Inhibitory Peptides from Pacific Cod (Gadus macrocephalus) Skin Gelatin. International Journal of Biological Macromolecules, 49(5), 1110–1116. https://doi.org/10.1016/j.ijbiomac.2011.09.009
Nurhayati, L. S., Yahdiyani, N., & Hidayatulloh, A. (2020). Perbandingan Pengujian Aktivitas Antibakteri Starter Yogurt dengan Metode Difusi Sumuran dan Metode Difusi Cakram. Jurnal Teknologi Hasil Peternakan, 1(2), 41. https://doi.org/10.24198/jthp.v1i2.27537
Nurilmala, M., Nurhayati, T., & Roskananda, R. (2018). Limbah Industri Filet Ikan Patin untuk Hidrolisat Protein. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(2), 288. https://doi.org/10.17844/jpFPH.v21i2.23083
Nurjanah, Nurhayati, T., Latifah, A., & Hidayat, T. (2021). Antioxidant Activity and Bioactive Components of Protein Hydrolysate Visceral of Barramundi (Lates calcalifer). Journal of Agro-based Industry, 38(1), 70–78.
Pitpreecha, S., & Damrongsakkul, S. (2006). Hydrolysis of Raw Hide Using Proteolytic Enzyme Extracted From Papaya Latex. Korean Journal of Chemical Engineering, 23(6), 972–976. https://doi.org/10.1007/s11814-006-0017-z
Shi, Q., Fang, Z., & Bhandari, B. (2013). Effect of Addition of Whey Protein Isolate on Spray-Drying Behavior of Honey with Maltodextrin as a Carrier Material. Drying Technology, 31(13–14), 1681–1692. https://doi.org/10.1080/07373937.2013.783593
Srikanya, A., Dhanapal, K., Sravani, K., Madhavi, K., & Kumar, G. P. (2017). A Study on Optimization of Fish Protein Hydrolysate Preparation by Enzymatic Hydrolysis from Tilapia Fish Waste Mince. International Journal of Current Microbiology and Applied Sciences, 6(12), 3220–3229. https://doi.org/10.20546/ijcmas.2017.612.375
Tavano, O. L. (2013). Protein Hydrolysis Using Proteases: An Important Tool for Food Biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11. https://doi.org/10.1016/j.molcatb.2013.01.011
Urgessa, O. E., Itana, D. D., & Raga, T. O. (2019). Extraction of Papain from Papaya (Carica papaya L.) Fruit Latex and Its Application in Transforming Tannery Raw Trimming. Ethiopian Journal of Sciences and Sustainable Development, 6(2), 22–32. https://doi.org/10.20372/EJSSDASTU:V6.I2.2019.92
Yuniarti, T., Prayudi, A., Supenti, L., Suhrawardan, H., & Martosuyono, P. (2021). The Hydrolysis Protein Profile of The By-Product of the Fresh Shrimp Processing Industry. Jurnal Perikanan Universitas Gadjah Mada, 23(1), 63. https://doi.org/10.22146/jfs.59906
Zheng, L., Yu, H., Wei, H., Xing, Q., Zou, Y., Zhou, Y., & Peng, J. (2018). Antioxidative Peptides of Hydrolysate Prepared from Fish Skin Gelatin Using Ginger Protease Activate Antioxidant Response Element-Mediated Gene Transcription in IPEC-J2 cells. Journal of Functional Foods, 51, 104–112. https://doi.org/10.1016/j.jff.2018.08.033